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In the present work, natural convection in an open-ended square cavity packed with porous medium is
simulated. The double-population approach is used to simulate hydrodynamic and thermal fields, and the
Taylor series expansion and the least-squares-based lattice Boltzmann method has been implemented to
extend the thermal model. The effect of a porous medium is taken into account by introducing the porosity
into the equilibrium distribution function and adding a force term to the evolution equation. The Brinkman–
Forchheimer equation, which includes the viscous and inertial terms, is applied to predict the heat transfer
and fluid dynamics in the non-Darcy regime. The present model is validated with the previous literature. A
comprehensive parametric study of natural convective flows is performed for various values of Rayleigh
number and porosity. It is found that these two parameters have considerable influence on heat transfer.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, many researchers have made endeavors to enhance the
ability of the lattice Boltzmann method (LBM) to simulate thermo-
fluidics. Threemethods for solving thermal LBM exist: themultispeed,
the passive scalar and the double-population approaches. Since the
LBM suffered from the instability, He et al. [1] developed the double-
population approach to overcome this drawback. Also, they proposed
Taylor series expansion and the least squares approach to employ the
LBM more efficiently for flows with arbitrary geometry.

Natural convection has lots of applications in both nature and
engineering, such as the cooling of electronic devices and heat
transfer improvement in heat exchanger apparatuses and petroleum
reservoirs. Because cavities and slots are benchmark test cases, many
numerical works on open cavities have been performed [2,3].
Similarly, several experimental studies have been done on open
cavities with aspect ratio of unity [4,5].

Research on natural convection in enclosure packed with a porous
medium is motivated by its wide applications in engineering, such as
drying processes, chemical catalytic reactors and solar power collectors.
Several models have been introduced for natural convection heat
transfer in porous media. An excellent and comprehensive review has
been given by Nield and Bejan [6]. The buoyancy-driven convection in
an open-ended cavity with an obstructing medium such as a porous
material is analyzed by Ettefagh J. and Vafai K. [7]. Saeid N.H. and Pop I.
[8] studied numerically the steady natural convection in a square cavity

filled with a porous medium with the Darcy–Forchheimer model, and
Nithiarasu et al. [9] also solved this problem with the Brinkman–
Forchheimer equation using conventional numerical methods and
demonstrated that the equation can appropriately predict the heat
transfer and fluid dynamics in the non-Darcy regime.

Natural convection in an open-ended cavity using LBM was
modeled by A.A Mohamad and his colleagues [10]. In their work,
D2Q9 for flow and D2Q4 for temperature were utilized, and the
influences of Rayleigh number and aspect ratio of the cavity have been
investigated in the range of 104–106 and of 0.5–10, respectively. They
concluded that heat transfer increases with increasing Ra and
decreases asymptotically with increasing the aspect ratio.

LBM has been applied successfully to simulate fluid flow in porous
media. Takeshi Seta et al. [11] analyzed the thermal performance of
natural convection in the square cavity with the presence of a porous
medium for different values of the Rayleigh number, the Darcy
number and porosity. They investigated the capability of LBM to solve
this problem and observed a good agreement between their model
and earlier studies. Wei-Wei Yan et al. [12] implemented LBM in a
natural convection problem in a square cavity filled with a
heterogeneously porous medium. It was reported that the porosity
near the walls has a significant influence on heat transfer while the
porosity in the middle of the cavity has little effect on the natural
convection.

To the best knowledge of the authors of this work, the problem of
natural convection in an open-ended cavity filled with a porous
medium using the thermal lattice Boltzmann method (TLBM) has
never been studied. The aim of the present study is to evaluate heat
transfer parameters and flow characteristics by altering the porosity
and Rayleigh number. The numerical results in the present work
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demonstrate great change in the flow and temperature fields, with
variations of the parameters mentioned above. Moreover, as these
parameters are varied in a wide range, some new phenomena are
observed.

First, a concise description of the governing equations and the
numerical strategy are represented. Next, the velocity and temperature
boundary conditions applied for open and solid boundaries are
introduced. Then, results and discussion are reported, and finally, some
conclusions are drawn.

2. Numerical method

The continuity, the Brinkman–Forchheimer, and the energy
equations are respectively written as

∇:u = 0 ð1Þ

∂tu + u:∇ð Þ u
ε

� �
= −1

ρ
∇ εpð Þ + υe∇

2u + F ð2Þ

∂t ρeð Þ + ∇: ρueð Þ = ∇χ2 ρeð Þ ð3Þ

where u is the fluid velocity vector, ε is the porosity of the medium, υe

is the effective viscosity, ρ is the density, p is the pressure, and χ is the
thermal diffusivity. With the widely used Ergun's relation [13], F is the
body force that denotes the viscous diffusion, the inertia due to the
presence of a porous medium and an external force, i.e.,

F = − ευ
K

u− 1:75ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
150εK

p juju + εG; ð4Þ

where υ is the kinematic viscosity, G is the buoyancy force vector, and
K is the permeability of porous media. With the Boussinesq
approximation, all the fluid properties are considered constant,
except in the buoyancy force term, where the fluid density is given
by ρ=ρm [1−β(T−Tm)]. ρm is the average fluid density, Tm is the
average fluid temperature and β is the thermal coefficient expansion
of the fluid. In this case, the buoyancy force acting per unit mass is
ρG=ρg0β (T−Tm) j, where j is in a direction opposite to gravity and
g0 is the acceleration due to gravity.

The lattice Boltzmannmethod provides an alternative way to solve
the partial differential equations by evolving variables on a set of
lattices. The mathematical demonstration of the TLBM can be found in
He et al. [1].

The main hypotheses of this model are:

• The Bhatnagar, Gross and Krook approximation (BGK) results that
the collision operator is expressed as a single relaxation time to the
local equilibrium.

• The Knudsen number is assumed to be a small parameter.
• The flow is incompressible.
• The viscous heat dissipation and compression work done by
pressure are neglected.

The evolution of the density distribution function f̃ for a single
fluid particle is then given by

Df̃
Dt

= ∂t f̃ + ξ:∇ð Þ f̃ = − f̃− f̃
eq

τv
+ F ð5Þ

where ξ is the microscopic velocity, τυ is the relaxation time for the
density distribution function , f̃

eq
is the Maxwell–Boltzmann equilib-

rium distribution function and F refers to the body forces. Similarly,
the internal energy distribution function g̃ is given by the following
evolution equation:

Dg̃
Dt

= ∂t g̃ +
→
ξ:∇

� �
g̃ = − g̃− g̃ eq

τc
ð6Þ

Nomenclature

c lattice streaming speed
cs speed of sound
c0 parameter defined in Eq. (21)
c1 parameter defined in Eq. (22)
Da Darcy number, =K/L2

eα particle velocity vector
F total body force vector
Fα discrete body force in LBM
fα density distribution function
fαeq equilibrium density distribution function
G buoyancy force term per unit mass
gα internal energy distribution function
gαeq equilibrium internal energy distribution function
g0 acceleration due to gravity
j unit vector in the y-direction
K permeability of porous media
L height and width of the cavity
P
Nu average Nusselt number
P pressure
Pr Prandtl number
R gas constant
Ra Rayleigh number
T temperature
Tm average temperature
Tw left-wall temperature
Ta ambient temperature
u fluid velocity vector
v temporal velocity

Greek symbols
α thermal conductivity
β thermal coefficient expansion
δt time step in the lattice
δx space step in the lattice
� porosity of the medium
ξ microscopic velocity
ρ fluid density
ρm average fluid density
τυ relaxation time for the density distribution function
τc relaxation time for the internal energy distribution

function
υ kinetic viscosity
υe effective viscosity
χ thermal diffusivity
ωα weighting coefficient

Subscripts
α discrete speed directions (α=0,…,8)
w left wall
a ambient

Superscripts
eq equilibrium
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