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This paper presents one-dimensional simulations of combustion of an air/methane mixture in porous
materials using a model that explicitly considers the intra-pore levels of turbulent kinetic energy. Transport
equations are written in their time-and-volume-averaged form and a volume-based statistical turbulence
model is applied to simulate turbulence generation due to the porous matrix. Four different thermo-
mechanical models are compared, namely Laminar, Laminar with Radiation Transport, Turbulent, Turbulent
with Radiation Transport. Combustion is modeled via a unique simple closure. Preliminary testing results
indicate that a substantially different temperature distribution is obtained depending on the model used. In
addition, for high excess air peak gas temperature is reduced and the flame front moves towards the exit of
the burner. Also, increasing the inlet flow rate for stoichiometric mixture pushes the flame out of the porous
material.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Combustion in inert porous media has been extensively investi-
gated due to the many engineering applications and demand for
developing high-efficiency power production devices. The growing
use of efficient radiant burners can be encountered in the power and
process industries and, as such, proper mathematical models of flow,
heat andmass transfer in porous media under combustion can benefit
the development of such engineering equipment.

Accordingly, the advantages of having a combustion process inside an
inert porous matrix are today well documented in the literature [1–8],
including a recent review on lean-combustion porous burners [9]. Hsu
et al. [10] points out some of its benefits including higher burning speed
and volumetric energy release rates, higher combustion stability and the
ability to burn gases of a low energy content. Driven by this motivation,
the effects on porous ceramics inserts have been investigated in Peard
et al. [11], among others.

Turbulencemodeling of combustionwithin inert porousmedia has
been conducted by Lim and Matthews [12] on the basis of an
extension of the standard k–ε model of Jones and Launder [13]. Work
on direct simulation of laminar in premixed flames, for the case when
the porous dimension is of the order of the flame thickness, has also
been reported in Sahraoui and Kaviany [14].

Further, non-reactive turbulence flow in porous media has been
the subject of several studies [15–17], including many applications
such as flow though porous baffles [18], channels with porous inserts

[19] and buoyant flows [20]. In such line of work, intra-pore
turbulence is accounted for in all transport equations, but only non-
reactive flow has been previously investigated in [15–20].

Motivated by the foregoing, this paper extends the previouswork on
turbulence modeling in porous media to include simulation of reactive
flows. Computations are carried out for inert porous material consider-
ing one-dimensional turbulent flow and a two-energy equation model.

In addition, four different thermo-mechanical models are here
compared, namely Laminar Flow, Laminar Flow with Radiation
Transport, Turbulent FlowandTurbulent FlowwithRadiationTransport,
being the last two models derived from the work in [15–20]. As such,
this contribution compares the effects of radiation and turbulence in
smoothing temperature distributions within porous burners.

2. Mathematical model

Asmentioned, two of the thermo-mechanicalmodels here employed,
involving turbulent flowwith andwithout radiation transport, are based
on the “double-decomposition” concept [15,16], which has been also
described in detail in a book [17]. In that work, transport equations are
volume-averaged according to the Volume Averaging Theorem [21–23]
in addition to using time decomposition of flow variables followed by
standard time-averaging procedure for treating turbulence.

As the entire equation set is already fully available in the open
literature, these equations will be just reproduced here and details
about their derivations can be obtained in the aforementioned
references. Essentially, in all the above-mentioned work the flow
variables are decomposed in a volumemean and a deviation (classical
porous media analysis) in addition of being also decomposed in a
time-mean and a fluctuation (classical turbulent flow treatment).
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Because mathematical details and proofs of such concept are
available in a number of papers in the literature, they are not repeated
here, as already noted. These final equations in their steady-state form
are the following.

2.1. Macroscopic continuity equation

∇⋅ρ−uD = 0 ð1Þ

where, u D̅ is the average surface velocity (also known as seepage,
superficial, filter or Darcy velocity) and ρ is the fluid density. Eq. (1)
represents the macroscopic continuity equation for the gas.

2.2. Macroscopic momentum equation
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where the last two terms in Eq. (2), represent the Darcy and
Forchheimer contributions. The symbol K is the porous medium
permeability, cF=0.55 is the form drag coefficient, 〈p〉i is the intrinsic
(fluid phase averaged) pressure of the fluid, µ represents the fluid
viscosity and ϕ is the porosity of the porous medium.

Turbulence is handled via a macroscopic k–ε model given by,
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Details on the derivation of the above equations can be found in
[17].

2.3. Macroscopic energy equations

Macroscopic energy equations are obtained for both fluid and solid
phases by also applying time and volume average operators to the
instantaneous local equations [24]. As in the flow case, volume
integration is performed over a Representative Elementary Volume
(REV). After including the heat released due to the combustion
reaction, one gets for both phases:

Gas : ðρcpÞf∇⋅ðuD〈
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Solid : 0 = ∇⋅fKeff ;s⋅∇〈
�Ts 〉ig−hiaið〈�Ts 〉i−〈

�Tf 〉iÞ; ð8Þ

where, ai=Ai/ΔV is the interfacial area per unit volume, hi is the film
coefficient for interfacial transport, Keff,f and Keff,s are the effective
conductivity tensors for fluid and solid, respectively, given by,
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Nomenclature

Latin characters
A Pre-exponential factor
cF Forchheimer coefficient
cp Specific heat
D = ⌊∇u + ð∇uÞT ⌋ = 2 Deformation rate tensor
Dℓ Diffusion coefficient of species ℓ
Ddiff Macroscopic diffusion coefficient
Ddisp Dispersion tensor due to dispersion
Ddisp,t Dispersion tensor due to turbulene
f2 Damping function
fµ Damping function
Deff Effective dispersion
K Permeability
kf Fluid thermal conductivity
ks Solid thermal conductivity
Keff Effective Conductivity tensor
mℓ Mass fraction of species ℓ
Pr Prandtl number
Sfu Rate of fuel consumption
T Temperature
u Microscopic velocity
uD Darcy or superficial velocity (volume average of u)

Greek characters
α Thermal diffusivity
βr Extinction coefficient
ΔV Representative elementary volume
ΔVf Fluid volume inside ΔV
ΔH Heat of combustion
µ Dynamic viscosity
ν Kinematic viscosity
ρ Density
ϕ ϕ = ΔVf

�
ΔV , Porosity

Ψ Excess air-to-fuel ratio

Special characters
φ General variable
〈φ〉i Intrinsic average
〈φ〉v Volume average
iφ Spatial deviation
φ Time average
|φ| Absolute value (Abs)
φ Vetorial general variable
( )s,f solid/fluid
( )eff Effective value, ϕφf+(1−ϕ)φs

( )ϕ Macroscopic value
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