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Laminar heat transfer in a porous channel is numerically simulated with a two-energy equation model for
conduction and convection. Macroscopic equations for continuity, momentum and energy transport for the
fluid and solid phases are presented. The numerical methodology employed is based on the control volume
approach with a boundary-fitted non-orthogonal coordinate system. Fully developed forced convection in a
porous channel bounded by parallel plates is considered. Solutions for Nusselt numbers along the channel
are presented for laminar flows. Results simulate the effects Reynolds number Re, porosity, particle size and
solid-to-fluid thermal conductivity ratio on Nusselt sumber, Nu, which is defined for both the solid and fluid
phases. High Re, low porosities, low particle diameters and low thermal conductivity ratios promote thermal
equilibrium between phases leading to higher values of Nu.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The assumption of local thermal equilibrium when analyzing heat
transport in porous media requires several constraints which have
been investigated in the literature [1–5]. For example, this condition is
no longer valid when the particles or pores are not small enough,
when the thermal properties differ widely, or when convective
transport is not important. Furthermore, when there is a significant
heat generation in any of the phases, the system will depart rapidly
from the local thermal equilibrium state [6]. For such extreme
conditions, the one-energy equation or one-temperature model is
inadequate to correctly describe both the transients associated with
the quench front penetrating the hot dry porous layer and regions
where dry out occurs. When the assumption of local thermal
equilibrium fails to be valid, one possible solution is to develop
separate transport equations for each phase [7–9]. This leads to
mathematical models that are referred to as thermal non-equilibrium
models, which consider distinct energy equations for each phase.
However, analyses of heat transfer in porous media based on two-
equation models are more complex because they require information
on interstitial heat transfer between phases as well as the interfacial
surface area. Due to such requirement, investigators have worked on
how to obtain the interfacial heat transfer coefficient. Examples of
such efforts are found in the work ofWakao et al. [10], who obtained a
heuristic correlation for closely packed bed and compared their
results with experimental data. Also found in the literature is a

numerical correlation for the interfacial convective heat transfer
coefficient, which was proposed by Kuwahara et al. [11] for laminar
flow and was based on porosity dependency.

Inpreviously publishedarticles, amathematicalmodel for predicting
turbulent flow in porous media has been presented [12], including
buoyant flows [13,14] as well as channel flows through porous inserts
[15], perforatedbaffles [16] and acrossmacroscopic interfaces [17]. In all
of the above, the so-called one-energy equationmodel was used, which
invoked the local thermal equilibrium between the working fluid and
solid matrix. Later, Saito and de Lemos [18] presented simulations for
laminar flows thorough the void space of rods, which were arranged in
arrays and simulated a repetitive unit cell in a model of a porous
medium. In a following article [19], a proposition of a correlation for the
interfacial heat transfer coefficient for turbulent flow in a packed bed
was presented. Results in [18,19] contributed to the development of a
macroscopic model for non-equilibrium heat transfer in porous media,
but no results for macroscopic flow were presented.

The purpose of this contribution is to combine the flow [12] and
thermal non-equilibrium [19] models for porous media and predict
macroscopic forced convection in a porous channel bounded by parallel
plates.

2. Macroscopic transport

2.1. Flow equations

Macroscopic equations obtained after volume integration over a
Representative Elementary Volume (REV) are given as [20,21],

Continuity : r · uD = 0: ð1Þ
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where the last two terms in Eq. (2) represent the Darcy and
Forchheimer contributions. The symbol K is the porous medium
permeability, cF is the form drag or Forchheimer coefficient, 〈p 〉̅i is the
intrinsic average pressure of the fluid and ϕ is the porosity of the
porousmedium. In this work, the permeability is taken as a function of
the particle diameter D as [22],
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/3D2

144 1−/ð Þ2 : ð3Þ

2.2. Energy equations

A two-energy equation model for convection and conduction in
porous media, considering a heat transfer coefficient between the
fluid and the solid phases, is given by the following equation set:
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where, 〈Ts〉i and 〈Tf〉
i denote the intrinsic average temperature of solid

and fluid phases, respectively, Ai is the interfacial area within the REV.
The convective transport is described in the second term on the right
hand side of Eq. (4) (see Rocamora and de Lemos [23] for details).

2.2.1. Interfacial heat transfer
In Eqs. (4) and (5) the heat transferred between the two phases

can be modeled by means of a film coefficient hi such that,
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where, ai=Ai /ΔV is the interfacial area per unit volume. In porous
media, the high values of ai make them attractive for transferring
thermal energy via conduction through the solid followed by
convection to a fluid stream.

As mentioned earlier, Wakao et al. [10] obtained a correlation for
closely packed bed of particle diameter D and compared their results
with experimental data. This correlation for the interfacial heat trans-
fer coefficient is given by,

hiD
kf

= 2 + 1:1Re0:6D Pr1=3: ð7Þ

Further, a numerical correlation for the interfacial convective heat
transfer coefficient was proposed by Kuwahara et al. [11] for laminar
flow as,
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Eq. (8) is based on porosity dependency and is valid for packed
beds of particle diameter D. In addition, Saito and de Lemos [18]
numerically calculated the interfacial heat transfer coefficient hi for
laminar flow through an infinite rod array. In their physical model, the
porous medium was considered to be formed by a large number of
regularly arranged solid square rods. This same methodology was
applied by Saito and de Lemos [19], who proposed a correlation for hi
for turbulent flow as,
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2.2.2. Thermal dispersion
In order to apply Eq. (4) to obtain the fluid temperature field in

porous media, the thermal dispersion term, 3rd term on the r.h.s of

Nomenclature

Latin characters
Ai interface area between fluid and solid phases
cF Forchheimer coefficient
cp fluid specific heat
D particle diameter
Da Darcy number, Da=K/H2

hi interfacial heat transfer coefficient
I unit tensor
K permeability
kf fluid thermal conductivity
ks solid thermal conductivity
Kdisp dispersion tensor
Kf,s thermal conductivity tensor for fluid phase.
Ks,f thermal conductivity tensor for solid phase.
p pressure
Pr Pr=v/α, Prandtl number
ReD Reynolds number based on D and superficial velocity

uD

T temperature
Tms average temperature of solid phase
Tmf average temperature of fluid phase
uB bulk velocity
u local velocity
uD Darcy or superficial velocity (volume average of u)
x, y Cartesian coordinates, m
X, Y non-dimensional coordinates, x/H and y/H

Greek characters
α fluid thermal diffusivity
ΔV representative elementary volume
ΔVf fluid volume inside ΔV
μ fluid dynamic viscosity
v fluid kinematic viscosity
ρ fluid density
ϕ ϕ=ΔVf /ΔV, porosity

Subscripts
w wall
s solid phase
f fluid phase
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