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a b s t r a c t

Timely and accurate monitoring of cropping intensity (CI) is essential to help us understand changes in
food production. This paper aims to develop an automatic Cropping Intensity extraction method based on
the Isolines of Wavelet Spectra (CIIWS) with consideration of intra-class variability. The CIIWS method
involves the following procedures: (1) characterizing vegetation dynamics from time–frequency dimen-
sions through a continuous wavelet transform performed on vegetation index temporal profiles; (2)
deriving three main features, the skeleton width, maximum number of strong brightness centers and
the intersection of their scale intervals, through computing a series of wavelet isolines from the wavelet
spectra; and (3) developing an automatic cropping intensity classifier based on these three features. The
proposed CIIWS method improves the understanding in the spectral–temporal properties of vegetation
dynamic processes. To test its efficiency, the CIIWS method is applied to China’s Henan province using
250 m 8 days composite Moderate Resolution Imaging Spectroradiometer (MODIS) Enhanced
Vegetation Index (EVI) time series datasets. An overall accuracy of 88.9% is achieved when compared with
in-situ observation data. The mapping result is also evaluated with 30 m Chinese Environmental Disaster
Reduction Satellite (HJ-1)-derived data and an overall accuracy of 86.7% is obtained. At county level, the
MODIS-derived sown areas and agricultural statistical data are well correlated (r2 = 0.85). The merit and
uniqueness of the CIIWS method is the ability to cope with the complex intra-class variability through
continuous wavelet transform and efficient feature extraction based on wavelet isolines. As an objective
and meaningful algorithm, it guarantees easy applications and greatly contributes to satellite observa-
tions of vegetation dynamics and food security efforts.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Increasing cropping intensity is an efficient and promising way
to promote global crop production without converting more lands
for agriculture (Atkinson et al., 2012). However, agricultural inten-
sification (e.g., increasing cropping intensity) has associated envi-
ronmental consequences such as degraded soil fertility, water
pollution, reduced biodiversity, and changes in atmospheric con-
stituents (Matson et al., 1997). The potential environmental and
social impacts from higher cropping intensity need to be carefully
evaluated (Atkinson et al., 2012; Ray and Foley, 2013). Timely
availability of large-scale information on the cropping intensity is
useful to manage agro-environmental ecosystems (Estel et al.,

2016; Fana et al., 2014). Often cropping intensity information is
only available as statistical data at the level of administrative units
and does not have accurate spatial details (Gray et al., 2014; Qiu
et al., 2014b). Therefore, reliable cropping intensity mapping is
vital for improving agricultural decisions and guaranteeing envi-
ronmental security (Fana et al., 2014; Gray et al., 2014).

Previous studies have been conducted for estimating cropping
intensity based on remote sensing vegetation indices time series
datasets (Biradar and Xiao, 2011; Estel et al., 2016; Galford et al.,
2008; Lunetta et al., 2010; Zhang et al., 2008). Among them, the
most frequently utilized method is calculating the peaks and
troughs from the vegetation indices temporal profiles (Biradar
and Xiao, 2011; Galford et al., 2008; Jain et al., 2013; Sakamoto
et al., 2006, 2009). However, these methods are difficult to be
engaged with uncertainties introduced by various situations such
as data noise (Galford et al., 2008). Recent research efforts aim to
improve included delineating rice cropping activities using wavelet

http://dx.doi.org/10.1016/j.compag.2016.04.015
0168-1699/� 2016 Elsevier B.V. All rights reserved.

⇑ Corresponding author at: Spatial Information Research Centre of Fujian
Province, Science Building, Floor 13th, Gongye Road 523, Fuzhou University,
Fuzhou 350002, Fujian, China.

E-mail address: qiubingwen@fzu.edu.cn (B. Qiu).

Computers and Electronics in Agriculture 125 (2016) 1–11

Contents lists available at ScienceDirect

Computers and Electronics in Agriculture

journal homepage: www.elsevier .com/locate /compag

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compag.2016.04.015&domain=pdf
http://dx.doi.org/10.1016/j.compag.2016.04.015
mailto:qiubingwen@fzu.edu.cn
http://dx.doi.org/10.1016/j.compag.2016.04.015
http://www.sciencedirect.com/science/journal/01681699
http://www.elsevier.com/locate/compag


transform and artificial neural networks (Chen et al., 2012a), a
shape-matching cropping index mapping method (Liu et al.,
2012), the k-means clustering method (Setiawan et al., 2014a) or
iterative self-organizing data analysis technique algorithm
(Nguyen et al., 2012) and setting constraint conditions affecting
the peaks of vegetation indices temporal profiles (Chen et al.,
2012b; Lv and Liu, 2010; Peng et al., 2011; Sakamoto et al., 2009).

There are at least two key challenges that needed to be further
addressed. One challenge is introduced by intra-class variability of
vegetation indices temporal profiles from croplands. The intra-
class variability of the original MODIS vegetation index time series
signals is almost inevitable due to complicated reasons such as alti-
tudinal and latitudinal gradient, variations in climatic, local soil
condition and land managements (Siebert and Ewert, 2012;
Wardlow et al., 2007). Three typical groups of intra-class variabil-
ity of original signals could generally be identified. The first group
is the altered vegetation phenology shift (advancement or delay),
reflected in a shifted vegetation indices temporal profile. It could
be introduced by altitudinal and latitudinal gradient (Qiu et al.,
2013b), inter-annual variability of climate conditions or any other
possibilities (Böttcher et al., 2014; Cleland et al., 2007; Jeong et al.,
2011). The second group is the varied plant growth, revealed by a
strengthened (considerably better vegetation growth) or lessened
vegetation indices temporal profile. It could be introduced by
site-specific conditions such as fertility, water and management
practices, and other potential reasons (Qiu et al., 2013a). The third
group of intra-class variability is introduced by different vegetation
types/agricultural crops (Davison et al., 2011). For example, the
double-cropping croplands could be planted with two different
combinations of agricultural crops (e.g., winter wheat plus maize,
early rice plus late rice). Till now, the challenge of intra-class vari-
ability has not been efficiently accounted for yet (Foerster et al.,
2012; Gumma et al., 2015; Liu et al., 2012; Yan and Roy, 2014).

Another challenge is the need for new perspective of developing
automatic, accurate methods which are robust to inter-annual
variability (Thenkabail and Wu, 2012). Automated and semi-
automated classification methods of remote sensing imagery have
been shown to both increase performance and efficiency, and thus,
reduce workload (Ghamisi et al., 2014; Quin et al., 2014; Terletzky
and Ramsey, 2014). However, most of the traditional methods rely
heavily on ground-truth sites or human interpretation for develop-
ing standard vegetation indices profiles or establishing classifica-
tion criteria. These approaches might be time-consuming, labor-
intensive, and inconsistent across different regions and years
(Terletzky and Ramsey, 2014; Thenkabail and Wu, 2012; Wu
et al., 2014). Recently, the automatic approaches are favored in
the field of croplands or forest disturbance mapping (Huang
et al., 2010; Kennedy et al., 2007; Stueve et al., 2011; Thenkabail
and Wu, 2012; Waldner et al., 2015; Wu et al., 2014; Yan and
Roy, 2014). Significant efforts should be drawn in the field of auto-
matic cropping intensity mapping (Chen et al., 2012a; Liu et al.,
2012; Setiawan et al., 2014a).

In order to address these two significant challenges, this paper
aims to develop an automatic Cropping Intensity extraction
method based on the Isolines of Wavelet Spectra (CIIWS) obtained
through continuous wavelet transform. The continuous wavelet
transform has long been successfully applied for pattern recogni-
tion in agriculture and related research fields (Du et al., 2006;
Gaucherel, 2002; Qiu et al., 2016, 2014a; Tseng et al., 2015;
Zhang et al., 2014). These studies revealed that the wavelet spec-
tra/features could efficiently capture the major signals of our study
objects (Zhang et al., 2014). The peak detection method based on
continuous wavelet transform can identify both strong and weak
peaks while keeping false positive rate low (Du et al., 2006). There-
fore, the continuous wavelet transform is selected to detect the
real peak pattern representing the vegetation growth cycles for

mapping cropping intensity. In the following sections, we give a
detailed description of our methodology and present its applica-
tion in Henan Province, China using the Moderate Resolution Imag-
ing Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI)
time series datasets.

2. Study area

The study area is Henan Province (Fig. 1) in China. Henan Pro-
vince is chosen since it ranked first in food production in China
over the past decade. It is approximately 520 km long and
572 km wide. Henan Province is located between latitudes 31�23
0–36�220N, longitudes 110�210–116�390E. It is typically character-
ized with a warm temperate climate. The altitudes increase from
22 m in the east plain to 2319 m in the west mountain (Fig. 1).
Almost one half (47.5%) of its areas are cultivated (Henan, 2010).
There are overall double crops, principally winter wheat plus
maize, cultivated in the east and southwest portion. Winter wheat
is sown in October, tillers during November to December, and har-
vests in late May or early June (Fig. 2). Maize is sown immediately
after the harvesting of winter wheat, and harvests from late
September to early October. Single crop, primary single rice, is pri-
mary cultivated in the south portion. Single rice is transplanted in
May and harvest in September. Some vegetables are cultivated
near cities, especially in the middle portion (near the Provincial
capital, Zhengzhou city). The cropping calendars of major crops
are provided (Fig. 2) with reference to our field survey data and
the agro-meteorological data obtained from the National Meteoro-
logical Information Centre of China. According to our field survey,
the average parcel size of double crop in plain is usually larger than
500 m � 500 m. The average parcel size of croplands near moun-
tains and hills could generally be less than 250 m � 250 m.

Due to the varieties of crops, altitudes and other site-specific
conditions (i.e. land fertility), these three typical groups of intra-
class variability of original signals introduced by different vegeta-
tion types/agricultural crops, altered vegetation phenology shift
and the varied plant growth are very common in Henan province.
Therefore, the Henan province provides good opportunity for us to
develop an automatic method which is robust to inter-annual
variability.

3. Data collection

3.1. MODIS EVI time series datasets

MODIS images offered a distinct opportunity for mapping agri-
cultural changes for spatial and temporal density coverage from
regional to global scales at no cost (Gumma et al., 2015). MODIS
surface reflectance 8-day composite level 3 (L3) 250-m data from
2011 to 2013 were obtained. The level 3 products have been atmo-
spherically and geometrically corrected. With red (R), near-
infrared (NIR) and blue (B) bands, EVI was then calculated as
2.5 ⁄ (NIR � R)/(NIR + 6.0R � 7.5B + 1) (Huete et al., 2002).

3.2. Field survey datasets and agricultural census data

The field survey data were gathered in early August 2012, early
February, Late April and late July 2013, middle January and August
2014, respectively. UniStrong MG858 hand-held GPS receivers
with the accuracy of 1 m were utilized for ground survey in field
sites. At each sampling sites, we recorded the cropping pattern
(e.g., winter wheat plus maize) and their corresponding phonolog-
ical stages, and measure the distribution areas. A total of 375
ground truth points were collected (see locations in (Fig. 1). Among
them, 213 survey sites were double crops, cultivated with winter
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