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The steady stagnation point flow and heat transfer over a shrinking sheet in a porous medium is studied. A
similarity transformation is used to reduce the governing system of partial differential equations to a set of
nonlinear ordinary differential equations which are then solved numerically using the Keller-boxmethod. The
behavior of the flow and heat transfer characteristics for different values of the governing parameters are
analyzed and discussed. Results for the skin friction coefficient, local Nusselt number, velocity profiles as well
as temperature profiles are presented for different values of the governing parameters. The results indicate
that dual solutions exist for the shrinking case.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Porous materials such as sand and crushed rock underground are
saturated with water which, under the influence of local pressure
gradients, migrate and transport the liquid through the material. The
transport properties of fluid-saturated porous materials are very
important in the petroleumand geothermal industries. Further examples
of convection through porousmediamay be found inmanmade systems
such asfiber and granular insulations, winding structures for high-power
density electric machines, and the cores of nuclear reactors (Bejan [1]),
food processing and storage, thermal insulation of buildings, geophysical
systems, electro-chemistry, metallurgy, the design of pebble bed nuclear
reactors, underground disposal of nuclear or non-nuclear waste, cooling
system of electronic devices, etc. Excellent reviews of the topic can be
found in the books byNield and Bejan [2], Pop and Ingham [3], Bejan et al.
[4], Ingham and Pop [5], Vafai [6], Vadasz [7] and Vafai [8]. Vafai and Tien
[9] analyzed the effects of a solid boundary and the inertial forces on flow
and heat transfer through a porousmedium and reported that the inertia
effects increase with the higher permeability and the lower fluid
viscosity. The steady stagnation point flow through a porous medium
bounded by a vertical surface was investigated by Ishak et al. [10] and it
was found that dual solutions exist for both assisting and opposingflows.

Viscous fluid motion toward a stagnation point on a solid body
has attracted the interest of many authors. Hiemenz [11] was the first
to study the two-dimensional stagnation flow using a similarity
transformation to reduce the Navier–Stokes equations to nonlinear

ordinary differential equations. He developed an exact solution to the
Navier–Stokes equations. Merril et al. [12] investigated the large time
(final state flow) solutions for unsteady mixed convection boundary
layer flow near a stagnation point on a vertical surface embedded in a
Darcian fluid-saturated porous medium.

Crane [13] was the first to study the problem of steady two-
dimensional boundary layer flow of an incompressible viscous fluid
caused by a stretching plate whose velocity varies linearly with the
distance from a fixed point on the sheet. The combination of both
stagnation flow and stretching surface was considered by Mahapatra
and Gupta [14,15]. The flow over a shrinking sheet was investigated by
Miklavčič and Wang [16]. For this flow configuration, the sheet is
shrunk toward a slot and the flow is quite different from the stretching
case. It is also shown that mass suction is required to maintain the flow
over the shrinking sheet. The flow induced by a shrinking sheet with
constant or power-law velocity distribution was investigated recently
by Fang [17] and Fang et al. [18]. Wang [19] studies the stagnation flow
towards a shrinking sheet and found that solutions do not exist for
larger shrinking rates and may be non-unique in the two-dimensional
case. The flow over an unsteady shrinking sheet was studied by Fang
et al. [20] and the solution is an exact solution of the unsteady Navier–
Stokes equations. This shrinking sheet problem was extended to a
second grade fluid [21], and MHD rotating flow of a viscous fluid [22].

The objective of this paper is to investigate the heat transfer
characteristics caused by a shrinking sheet immersed in a fluid-
saturated porous medium. The results for the skin friction coefficient,
local Nusselt number, velocity profiles as well as the temperature
profiles are obtained and discussed for different values of the governing
parameters.We restrict our study to unit Prandtl number, taking Pr=1.
We expect our results are qualitatively similar with other values of Pr
of O(1).
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2. Problem formulation

Consider a steady stagnation pointflowover a shrinking sheetwhich
is embedded in a porous medium as shown in Fig. 1. The Cartesian
coordinates x and y are taken with the origin O at the stagnation point,
and are defined such that the x-axis is measured along the stretching/
shrinkingsheet and they-axis ismeasurednormal to it. It is assumed that
the velocity of the external flow is given by ue(x)=a x, where aN0 is the
strength of the stagnation flow and the surface temperature Tw is a
constant. It is also assumed that the velocity of the stretching/shrinking
sheet is givenbyuw(x)=b x, where b is the stretching rate,with bN0 and
bb0 are for stretching and shrinking cases, respectively. The boundary
layer equations in a porous medium are given by [23]

∂u
∂x +

∂v
∂y = 0; ð1Þ

u
∂u
∂x + v

∂u
∂y = ue
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∂2u
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u
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∂T
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∂2T
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; ð3Þ

subject to the boundary conditions

u = uw xð Þ = bx; T = Tw at y = 0;
u = ue xð Þ = ax; T = T∞ as y→∞; ð4Þ

where u and v are the velocity components along the x- and y-axes,
respectively, T is the fluid temperature and the other physical quantities
are defined in the Nomenclature.

To obtain similarity solutions for the system of Eqs. (1)–(4), we
introduce the following similarity variables (see Cheng [24] or Lai and
Kulacki [25])

η =
ue x
α

� �1=2 y
x
; ψ = αxueð Þ1=2 f ηð Þ; θ ηð Þ = T−T∞

Tw−T∞
; ð5Þ

where ψ is the stream function defined as u=∂ ψ/∂ y and v=−∂ ψ/∂ x,
which identically satisfy Eq. (1). Using the non-dimensional variables in
Eq. (5), Eqs. (2) and (3) reduce to the following ordinary differential
equations

Pr f ‴ + f f ″−f ′2 + 1 + K 1−f ′
� �

= 0; ð6Þ

θ″ + f θ′ = 0; ð7Þ

subject to the boundary conditions

f 0ð Þ = 0; f ′ 0ð Þ = b= a = c; θ 0ð Þ = 1;
f ′ ηð Þ→1; θ ∞ð Þ→0 as η→∞; ð8Þ

where primes denote differentiation with respect to η, Pr=ν/α is the
Prandtl number and K=ν/(aK1) is the permeability parameter. It is
worth mentioning that cN0 and cb0 correspond to stretching and
shrinking sheets, respectively, while c=0 is the planar stagnation flow
towards a stationary sheet. Moreover, c=1 corresponds to the flow
with no boundary layer (uw=ue).

The physical quantities of interest are the skin friction coefficient Cf
and the local Nusselt number Nux, which are defined as

Cf =
τw

ρu2
e = 2

; Nux =
xqw

k Tw−T∞ð Þ ; ð9Þ

where the surface shear stress τw and the surface heat flux qw are
given by

τw = μ
∂u
∂y

� �
y=0

; qw = −k
∂T
∂y

� �
y=0

; ð10Þ

Fig. 1. Physical model of two-dimensional stagnation point flow over a shrinking sheet.

Nomenclature

a, b, c constants
Cf skin friction coefficient
f dimensionless stream function
k thermal conductivity
K permeability parameter
K1 permeability of the porous medium
Nux local Nusselt number
Pex local Péclet number
Pr Prandtl number
qw surface heat flux
Rex local Reynolds number
T fluid temperature
Tw surface temperature
T∞ ambient temperature
u, v velocity components along the x and y directions,

respectively
µe velocity of the external flow
µw velocity of the stretching surface
x, y Cartesian coordinates along the surface and normal to

it, respectively

Greek letters
α thermal diffusivity
β thermal expansion coefficient
η similarity variable
μ dynamic viscosity
ν kinematic viscosity
θ dimensionless temperature
ρ fluid density
τw surface shear stress
ψ stream function

Subscripts
w condition at the surface
∞ condition away from the surface

Superscript
′ differentiation with respect to η
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