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This study focuses on utilizing numerical calculation to investigate the heat transfer mechanisms in a⊔ shape
reciprocating channel system comprised of a horizontal channel at the bottom and vertical channels on both
left and right sides. The issue is considered one kind of moving boundary problems and the finite element and
Arbitrary Lagrangian–Eulerian (ALE) kinematic methods can be applied to this study. Due to the high tempera-
ture at the bottom surface of the horizontal channel and the direction of inlet cooling fluids in the same direc-
tion of the gravity, the heat transfer mechanisms induced by the mixed convection flow become extremely
complex. The results show that thermal layers near the heat surface are disturbed drastically and the effect of
reciprocatingmotion upon the heat transfer mechanisms strongly depends on a relationship between Reynolds
and Grashof numbers.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Protecting a piston from heat damage could effectively enhance
the thermal efficiency of the heat engine and economize the usage of
energy [1]. Numerous studies were then to investigate similar objects.
In order to simulate the heat transfer phenomena of pistons in a re-
ciprocating motionmore realistically, the heat dissipation phenomena
in a ⊔ shape reciprocating channel assumed as the piston action have
been studied numerically by the authors and the related studies were
reviewed in detail in [2].

In the previous study [2] the forced convection mechanisms were
investigated exclusively. However, the temperature of pistons is usually
veryhighand theeffectof natural convectionon theheat transfermech-
anisms of the reciprocatingobject needs to be considered also. Thus this
study aims to investigate the numerical calculation of the mixed con-
vection mechanisms in the ⊔ shape reciprocating channel. Effects of
Reynolds and Grashof numbers on the heat transfer mechanisms are
examined in detail.

Usually when the problem of mixed convection is investigated, the
relationship between the directions of inlet cooling fluids and gravity,
and the positions of heat region relative to the direction of gravity
should be examined first. In this study the vertical channels on the left
and right sides provide the cooling fluids to flow into and out of the ⊔
shape channel, respectively. A heat region is installed at the bottom
of the horizontal channel in the ⊔ shape channel system. The inlet

cooling fluids have the same direction as the gravity. Due to the posi-
tion of heat region, the phenomena of opposite and aiding flows can
be observed in the left and right channels, respectively. Additionally,
because of the mutual counteractions caused by the buoyancy of up-
ward direction and the impulse of cooling fluids in a horizontal direc-
tion, thermal layers attaching to the heat region of horizontal channel
will be disturbed drastically. As a result, the local Nusselt numbers
distributed on the heat surface vary with time in a periodical duration.
These interesting and complicated phenomena have not been inves-
tigated yet.

2. Physical model

A physical model implemented in this study is shown in Fig. 1. The
total channel width and length are w0 and h0, respectively, and the
channel width is w. The horizontal channel means the region sur-
rounded by BO0FGP0C. The bottom surface BC is heat surface and at
constant temperature TH. Besides, the temperature and velocity of
inlet cooling fluids are T0 and v0, respectively. Other surfaces of the
channel are insulated. The original length between OP and MN is w
and the maximum elongation length is 2w. A part of the channel
circled by M0BCN0G0GFF 0 is called as a reciprocating channel. The ad-
justable length w is the moving distance of the reciprocating channel.
Therefore, computational grids in this region are flexible. As the chan-
nel moves downward, MN is fixed and OP moves downward with a
velocity of vc, the original region is then elongated. Afterward the OP
moves upward and returns to the original position. The mesh velocity
of the computational grids inside the horizontal channel is equal to
that of OP . The right channel length hl is long enough for satisfying the
convergent conditions of the temperature and velocity at the outlet of
the channel. The reciprocating velocity of the horizontal channel is vc,
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and can be expressed as the equation, vc=vmsin(2πfct), where vm is
the maximum reciprocating velocity of the piston and equals to 2πfclc.
When the channel moves reciprocally, it will cause the motions of the
cooling fluids to be time-dependent. The circumstance is regarded as a
moving boundary problem and therefore the Arbitrary Lagrangian–
Eulerian (ALE) method is properly applied to this study.

For facilitating the analysis, the following assumptions are made.

(1) The fluid is air and the flow field is two-dimensional, incom-
pressible and laminar.

(2) Except the density of the fluid, other properties of the fluid are
assumed to be constant, and Boussinesq assumption is adopted.

(3) Apply the no-slip condition to all boundaries. Thus thefluid velo-
city on the moving boundaries is equal to the moving velocity of
the boundaries.

Based upon the characteristics scales of w, v0, ρv02, and T0, the
dimensionless variables are defined as follows:

X =
x
w
; Y =

y
w
; U =

u
v0

; V =
v
v0

; V̂ =
v̂
v0

; Vm =
vm
v0

; Vc =
vc
v0

Fc =
fcw
v0

; P =
p − p∞
ρv20

; τ =
tv0
w

; θ =
T − T0
Th − T0

; Re =
v0w
m

; Pr =
m
α

Gr =
gβ Th − T0ð Þw3

m2
; Vc = Vm sin 2πFcτð Þ ð1Þ

and v̂ is defined as the mesh velocity.

According to the above assumptions and dimensionless variables,
the dimensionless ALE governing equations are expressed as the fol-
lowing equations:

Continuity equation
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Energy equation
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In this study, the cooling channel moves only in a vertical direc-
tion and therefore the horizontal mesh velocity is absent in the above
governing equations. According to ALE method, the mesh velocity V ̂

is linearly distributed in the region between MN (fixed) and OP
(movable). The mesh velocity Vη1 at the position η1 is proportional to
the distance between MN and OP , and is defined as the following
equation,

Vη1
=

η1
η0

· Vc ð6Þ

In theother regions, themeshvelocities are all set tobe0. Thebound-
ary conditions and solutions method used in this study are similar to
those adopted in [2] except the term Gr/Re2 taken into consideration in
Eq. (4).

Nomenclature

Fc dimensionless reciprocating frequency of the piston
Gr Grashof number
h1 dimensional height of the inlet channel and outlet

channel [m]
Lc dimensionless reciprocating amplitude of the piston
NuX local Nusselt number
NuX average Nusselt number on the heat surface
Nuc time-average Nusselt number per cycle
p dimensional pressure [N m−2]
p∞ reference pressure [N m−2]
P dimensionless pressure
Pr Prandtl number
Re Reynolds number
t dimensional time [s]
T dimensional temperature [K]
u, v dimensional velocities of in x and y directions [m s−1]
v0 dimensional velocities of the inlet fluid [m s−1]
U, V dimensionless velocities of in X and Y directions
Vc dimensionless reciprocating velocity of the piston
Vm dimensionless maximum reciprocating velocity of the

piston
V̂ dimensionless mesh velocity in y-direction
x, y dimensional Cartesian coordinates [m]
X, Y dimensionless Cartesian coordinates

Greek symbols
α thermal diffusivity [m2 s−1]
v kinematics viscosity [m2 s−1]
η0 total length of the moving mesh region
η1 length counted from the bottom of the moving mesh

region
θ dimensionless temperature
ρ density [kg m−3]
τ dimensionless time

Fig. 1. Physical model of the ⊔ shape channel.
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