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a b s t r a c t

Detection of yellow rust is of great importance in disease control and reducing the use of fungicide. Spec-
tral analysis is an important method for disease detection in terms of remote sensing. In this study, an
emerging spectral analysis method known as continuous wavelet analysis (CWA) was examined and
compared with several conventional spectral features for the detection of yellow rust disease at a leaf
level. The leaf spectral measurements were made by a spectroradiometer at both Zodaks 37 and 70 stages
with a large sample size. The results showed that the wavelet features were able to capture the major
spectral signatures of yellow rust, and exhibited considerable potential for disease detection at both
growth stages. Both the accuracies of the univariate and multivariate models suggested that wavelet fea-
tures outperformed conventional spectral features in quantifying disease severity at leaf level. Optimal
accuracies returned a coefficient of determination (R2) of 0.81 and a root mean square error (RMSE) of
0.110 for pooled data at both stages. Furthermore, wavelet features showed a stronger response to the
yellow rust at Zodaks 70 stage than at Zodaks 37 stage, indicating reliable estimation of disease severity
can be made until the Zodaks 70 stage.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Yellow rust disease caused by the fungus Puccinia striiformis has
a severe impact on the production of winter wheat worldwide. The
epidemic of yellow rust may result in extremely severe yield loss
and deterioration in grain quality (Singh et al., 2002). In order to
prevent widespread infection, fungicides were applied in consider-
able amounts at high cost (Line, 2002); which caused problems of
fungicide residue and soil contamination (Strange and Scott, 2005).
To mitigate the problem of fungicide overuse and facilitate effec-
tive fungicide spraying in the field, real-time disease detection
and mapping is a necessity. As a noncontact way of obtaining
ground information in a continuous manner, remote sensing is
proven to be efficient in crop status monitoring and yield mapping
(Moran et al., 1997; Seelan et al., 2003). Among various types of re-
mote sensing techniques, hyperspectral remote sensing is one of
the most efficient ways to capture weak signals in the spectrum,
given its high spectral resolution (Goetz et al., 1985). Hyperspectral

analysis is widely and successfully applied to monitor the vitality
and stresses of crops (e.g. leaf area index, pigments contents, crop
diseases and pests) (Haboudane et al., 2004; Moshou et al., 2004;
Oppelt and Mauser, 2004; Duveiller et al., 2011; Zhang et al.,
2012a).

Based on hyperspectral data, many forms of spectral features
have been proposed and are used for information extraction,
including vegetation indices (VIs), derivative spectral features
and continuous removal transformed features (Clark and Roush,
1984; Demetriades-Shah et al., 1990; Weng, 2011). The above con-
ventional spectral features (SFs) are commonly used proxies in
spectral detection of crop diseases. Moshou et al. (2004) success-
fully detected yellow rust in winter wheat based on the normalized
difference vegetation index (NDVI), with a classification accuracy
higher than 95%. Jiang et al. (2007) found that the sum of first
derivatives within the red edge (SDr) and the green edge (SDg)
had a high negative linear correlation with disease severity. Huang
et al. (2007) used the photochemical reflectance index (PRI) to
quantify the disease severity of yellow rust at both canopy and
field levels. Devadas et al. (2009) examined ten VIs in discriminat-
ing three different types of wheat rust. Their results suggested that
the anthocyanin reflectance index (ARI) and the transformed chlo-
rophyll absorption and reflectance index (TCARI) were the most
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efficient SFs for differentiating the three rust types. In addition,
based on the support vector machines (SVM) technique and 6 VIs
including NDVI, simple ratio (SR), structure insensitive vegetation
index (SIPI), pigments specific simple ratio (PSSR), ARI and modi-
fied chlorophyll absorption and reflectance index (MCARI), Rumpf
et al. (2010) successfully identified the sugar beet disease at an
early stage, with the classification accuracy up to 97%.

Apart from these conventional SFs, the continuous wavelet
analysis (CWA) was an emerging method for spectral analysis
and time series analysis (Mallat, 1999), which has been adopted
in remote sensing spectra/image processing (Bruce and Li, 2001;
Bruce et al., 2006; Cheng et al., 2010, 2011). Given that hyperspec-
tral data vary in both amplitude (e.g. feature depth) and scale (e.g.
feature width), the CWA is able to decompose such data at contin-
uous positions and scales, which allows a thorough exploration
over the spectrum (Li and Bruce, 2004; Rivard et al., 2008). In
Cheng et al. (2010)’s study, CWA derived features were compared
with a number of conventional SFs in estimating leaf water content
(LWC). With a spectral dataset comprised of 31 plant species, the
wavelet features produced a significantly higher accuracy than
the conventional features, which suggests the capability of CWA
in detecting the biophysical status of plants is superior to conven-
tional SFs. However, given our literature review, the CWA tech-
nique has received little attention for use in disease detection. In
our review, comparison between the wavelet SFs and conventional
SFs in disease detection was lacking. Therefore, to determine
whether the CWA technique is suitable for disease detection, its
performance was examined based on a spectral dataset with a
large sample size. The objectives of this study were: (1) to identify
the appropriate CWA derived SFs in detecting yellow rust disease
at a leaf level and (2) to compare the performance of those wavelet
features with conventional SFs using both univariate and multivar-
iate regression models.

2. Materials and methods

2.1. Study sites and materials

The experiments were conducted at Beijing Xiaotangshan Preci-
sion Agriculture Experimental Base, in Changping district, China
(40�10.60N, 116�26.30E) during the 2010–2011 growing seasons.
The cultivar of winter wheat was ‘Jingdong 9843’, which was
susceptible to yellow rust disease. The soil at this site is a silt–clay
loam. The average topsoil nutrient status (0–0.30 m depth) was as
follows: organic matter 1.42–1.48%, total nitrogen 0.08–0.10%,
alkali-hydrolysis nitrogen 58.6–68.0 mg kg�1, available phosphorus
20.1–55.4 mg kg�1, and rapidly available potassium 117.6–
129.1 mg kg�1. The experimental field received 200 kg ha�1 nitro-
gen and 450 m3 ha�1 water, which was a recommended rate for this
cultivar. The spray method was used for inoculating yellow rust
spores to wheat plants, referring to the National Plant Protection
Standard (Li et al., 1989). Two concentration levels of summer
spores were applied to generate a gradient of infection levels of yel-
low rust, including 4 mg 100�1 ml�1 and 7.5 mg 100�1 ml�1 with a
dosage of 5 ml spores solution per square meter. The recommended
amount of fungicide to prevent the occasional infection was applied
to the (uninfected) reference area that was not inoculated. Each
treatment included a 220 m2 area; totaling 660 m2 for the disease
inoculation experiment.

Based on the study of Cao et al. (2009), Zodaks 37 is important
for implementing preventive operations such as fungicide spray,
whereas Zodaks 70 is important for conducting yield loss assess-
ment. Therefore, leaf sampling and spectral measurements were
carried out at Zodaks 37 stage (April 29) and Zodaks 70 stage
(May 23), respectively.

2.2. Data acquisition

2.2.1. Spectral measurement for leaf samples
At each sampling stage, the leaves were cut from the plants

with scissors then immediately packed with ice bags and trans-
ported to a nearby indoor laboratory for spectral measurement. A
total of 107 leaf samples consisting of 29 healthy and 78 diseased
leaves were collected at Zodaks 37 stage (S1); 91 samples including
26 healthy and 65 diseased leaves were collected at Zodaks 70
stage (S2). At each stage, samples were randomly grouped for cal-
ibration and validation of models with a proportion of 60:40
percent.

Leaf spectra were measured by a FieldSpec� UV/VNIR spectrora-
diometer (ASD Inc., Boulder, Colorado, USA) over 350–2500 nm
wavelengths, coupled with an ASD Leaf Clip at the front side of
each leaf. Ten readings were recorded and averaged to obtain a
spectral measurement for each leaf. The spectrum of a white
Spectralon reference panel (99% reflectance) was measured once
for every 10 leaf measurements. Leaf reflectance was transformed
by dividing the sample radiance with that of the white Spectralon
reference panel. A digital color photo was taken right after each
spectral measurement with a white paper background for determi-
nation of disease severity.

2.2.2. Determination of disease severity
In this study, disease index (DI) was used for quantifying the

disease severity that denoted the portion of disease pustules on
the leaf and was estimated through visual inspection (Graeff
et al., 2006; Luedeling et al., 2009). All samples were inspected
by one investigator based on the digital photos to minimize subjec-
tive error. The DI value was estimated in steps of 5% within a range
of 5–100%. Leaves with a pustule portion less than 5% were
assigned to the healthy class due to the difficulty to accurately rec-
ognize them.

2.3. Analytical methods

2.3.1. Continuous wavelet analysis and features extraction
Wavelet analysis is a powerful signal processing tool that has

been successfully applied to hyperspectral data for dimensionality
reduction (Bruce et al., 2002; Kaewpijit et al., 2003). Recent studies
demonstrated advantages of wavelet analysis to some more con-
ventional methods in identifying plant species (Kalácska et al.,
2007; Zhang et al., 2006) and in estimating forest biophysical
parameters (Pu and Gong, 2004).

Wavelet analysis can be implemented as a continuous wavelet
transform (CWT) or a discrete wavelet transform (DWT) (Black-
burn and Ferwerda, 2008; Bruce and Li, 2001). The DWT is mostly
used for feature reduction but a drawback is the difficulty in inter-
preting the output coefficients (Kalácska et al., 2007; Cheng et al.,
2010). In contrast, the CWT wavelet coefficients are directly com-
parable to the original reflectance bands and can thereby provide
interpretable information on shapes and positions of absorption
features for leaf spectra (Blackburn and Ferwerda, 2008; Cheng
et al., 2011).

In this study, the CWA was performed on the reflectance dataset
of diseased leaves to extract a series of wavelet features for
detecting yellow rust disease. A workflow of feature extraction
using CWA was illustrated in Fig. 1, which includes continuous
wavelet transform, generating of wavelet power scalogram,
obtaining correlation salogram and identifying wavelet features
by thresholding.

2.3.1.1. Step 1: Continuous wavelet transform. The wavelet transfor-
mation was the central process of CWA which convert each origi-
nal spectrum to a set of coefficients on varied wavelengths and

80 J. Zhang et al. / Computers and Electronics in Agriculture 100 (2014) 79–87



Download English Version:

https://daneshyari.com/en/article/6540913

Download Persian Version:

https://daneshyari.com/article/6540913

Daneshyari.com

https://daneshyari.com/en/article/6540913
https://daneshyari.com/article/6540913
https://daneshyari.com

