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a b s t r a c t

The berry size is one of the most important fruit traits in grapevine breeding. Non-invasive, image-based
phenotyping promises a fast and precise method for the monitoring of the grapevine berry size. In the
present study an automated image analyzing framework was developed in order to estimate the size
of grapevine berries from images in a high-throughput manner. The framework includes (i) the detection
of circular structures which are potentially berries and (ii) the classification of these into the class ‘berry’
or ‘non-berry’ by utilizing a conditional random field. The approach used the concept of a one-class clas-
sification, since only the target class ‘berry’ is of interest and needs to be modeled. Moreover, the classi-
fication was carried out by using an automated active learning approach, i.e. no user interaction is
required during the classification process and in addition, the process adapts automatically to changing
image conditions, e.g. illumination or berry color. The framework was tested on three datasets consisting
in total of 139 images. The images were taken in an experimental vineyard at different stages of grape-
vine growth according to the BBCH scale. The mean berry size of a plant estimated by the framework cor-
relates with the manually measured berry size by 0.88.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Grapevine (V.vinifera L. subsp. vinifera) is one of the oldest and
one of the economically most important fruit crops. Grapevines are
highly susceptible to various diseases like powdery and downy
mildew requiring high plant protection efforts. Hence, grapevine
breeders around the world select for high disease resistance, cli-
matically well adapted and high quality new cultivars (Töpfer
et al., 2011). Due to the specific cultivation of grapevines as a
perennial plant e.g. fruit traits can only be evaluated in the vine-
yard and are highly influenced by environmental factors. Their
evaluation requires several repetitions. Up to now phenotyping
of grapevines in vineyards has been carried out by estimation
applying the BBCH scale (Bloesch and Viret, 2008) or OIV descrip-
tors (OIV, 2001). It is very time consuming, requires a lot of exper-
tise and is expensive. The resulting data are subjective which make

subsequent analysis more difficult like the identification of new
Quantitative Trait Loci (QTL). Accurate phenotyping is the key tool
for future plant breeding. Objectivity, automation and precision of
phenotypic data evaluation are crucial in order to reduce the phe-
notyping bottleneck.

The application of digital image analysis tools and image inter-
pretation techniques promise a technology for high-throughput
phenotyping in order to (a) increase the quantity of phenotyping
samples, (b) to improve the quality of recording and (c) minimize
error variation. Low-level analysis tasks such as finding geometric
objects (e.g. Peng et al., 2007; Chan and Shen, 2005) as well as tasks
with introduced semantic higher-level information have been
dealt within the literature for various applications. Especially,
higher-level knowledge about the context and the spatial arrange-
ment of objects have been early proved beneficial for object detec-
tion or semantic image segmentation (e.g. Bar and Ullman, 1996;
Biederman et al., 1982; Palmer, 1975). A well established way to
incorporate this knowledge is the utilization of a conditional ran-
dom field, which was introduced by Lafferty et al. (2001). It has
been used for example by Gould et al. (2008) and Galleguillos
et al. (2008) as well as Rabinovich et al. (2007) in order to incorpo-
rate semantic context between detected objects of different pre-
defined classes. Another approach was applied by Lafarge et al.
(2010) or Descombes et al. (2009), who extract different kinds of
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geometric objects with point processes yielding an optimal object
configuration. Such approaches assume that the objects are discon-
nected from each other and the background is distinct enough so
that the objects are clearly visible (Lempitsky and Zisserman,
2010). This situation is not always given, even less for phenotyping
in the field.

One challenge in digital image analysis for high-throughput
phenotyping is that only one target class, such as ‘berry’, is of inter-
est. Other classes, which are necessary for multi-class classifica-
tion, are hard to gather and cannot be specified in many cases
due to their high intra- and inter-class variety. In order to over-
come this problem, the concept of one-class classification has been
introduced, which distinguishes one target class from all other
classes without explicitly defining them (e.g. Khan and Madden,
2010; Tax, 2001; Moya and Hostetler, 1993). In this framework,
both conditional random fields and an one-class classifier are com-
bined in order to find objects which belong to the target class ‘ber-
ry’. Similar to Song et al. (2013), who are using a conditional
random fields in order to model temporal dependencies in an
one-class dataset, this framework exploits information of the spa-
tial arrangement of berries in clusters. Moreover, the framework
uses an active learning approach (Settles, 2010) which defines
the one-class dataset from scratch in each image. This has the
advantage that no human user interaction is required during clas-
sification process and in addition, the process adapts automatically
to changing conditions, e.g. illumination or berry color.

Image-based detection of grapes is known from precision viti-
culture. For example, Nuske et al. (2011) detect and count berries
for yield estimation, Berenstein et al. (2010) detect and localize
berry clusters for selective spraying or Mazzetto et al. (2010) mon-
itor canopy health and vigor utilizing optical and analog sensors.
Image-based phenotyping in vineyards in order to support the
identification of new molecular marker for grapevine breeding
comprises more detailed detection and survey of small structures,
e.g. single grapevine berries. The grapevine berry size is one of the
most important target fruit traits in viticulture (Fanizza et al.,
2005; Cabezas et al., 2006; Costantini et al., 2008), whereas grape-
vine cultivars should preferentially have uniformity size of berries
(Beslic et al., 2009). In general, the berry diameter is estimated by
experts applying the OIV descriptor number 221 (OIV, 2001). This
descriptor enables the classification of the berry size into five clas-
ses (class 1: very narrow berries up to about 8 mm; class 2: narrow
berries about 13 mm; class 3: medium berries about 18 mm; class
4: wide berries about 23 mm; and class 5: very wide berries about
28 mm and more). The results of the visual estimated berry diam-
eter by humans are subjective resulting in error variations between
the results of different people. In addition, precision from only
5 mm could be achieved, which is too inaccurate for precise berry
size QTL calculations. Moreover, it should be noted that the manual
estimation of sufficient amounts is very time consuming and con-
sequently the classification of the berry size is only feasible on se-
lected breeding material. Minor differences in berry sizes of only
1–2 mm have to be achieved on thousands of grapevines at few
days (ensure comparability of records), which is possible using im-
age-based approaches. The framework presented in the current
study aimed at an automated estimation of the size of grapevine
berries from single images, which were taken in an experimental
vineyard at different developmental stages. Hereby, the detection
of representative berries and the determination of their diameter
will be included.

The field experiments, obtained plant material and images are
introduced in Sections 2.1 and 2.2. In Section 2.3 the proposed
framework and its parts are introduced. Section 2.4 explains the
introduced parts in more detail. The experiments and the obtained
results are showed and discussed in Section 3. The paper concludes
in Section 4.

2. Material and methods

2.1. Plant material

Field experiments were conducted during the growing season
of 2012. Tests involved rows of the Vitis vinifera ssp. vinifera cul-
tivars ‘Riesling’, ‘Pinot Blanc’, ‘Pinot Noir’ and ‘Dornfelder’ at the
experimental vineyard of Geilweilerhof located in Siebeldingen,
Germany (N 49� 21.747, E 8� 04.678). Fifteen plants per cultivar
were used for image acquisition and the measurement of refer-
ence data.

2.2. Image acquisition and reference measurements

Image acquisitions were carried out using a single-lens reflex
(SLR) camera (Canon� EOS 60D). Camera calibration was per-
formed according to Abraham and Hau (1997) with a wide-angle
of 28 mm equivalent focal length. Images (8-bit RGB,
3456 � 2304 pixel) of grapevines were captured in the vineyard
with a distance of about 1 m at three different plant development
stages BBCH 75, BBCH 81 and BBCH 89 (Bloesch and Viret, 2008).
The images were acquired under natural illumination field condi-
tions with manually controlled exposure. Images were saved for
offline processing. Reference measurements were conducted man-
ually in parallel to image acquisition. Therefore, 50 berries per
plant, cultivar and BBCH stage were randomly selected to measure
the berry diameter by the utilization of an electronic calliper (In-
size� Co. LTD, Conrad electronics SE, Hirschau, Germany). In order
to transform measurements in the images from pixel to mm, col-
ored labels with a width of 13 mm (Roth� GmbH, Karlsruhe, Ger-
many) were fixed on the wires in the vineyard.

2.3. Framework

A five-step framework was developed using Matlab� (Math-
works, Ismaning, Germany) in order to extract phenotypic data
from images (Fig. 1). The steps include various image analyzing
tools and interpretation methods, which are explained in more de-
tail in Section 2.4. The challenge of the framework is the detection
of as many berries as possible in order to extract a representative
amount of phenotypic data while keeping the error rate of falsely
detected berries as low as possible in order to ensure a high quality
of the extracted data.

(Step 1) Pre-processing: The image is adjusted automatically
regarding brightness, color and contrast in order to compensate
illumination effects. For this the image is converted into the YIQ
color space and adjusted, whereas Y is the luminance and I and
Q contain the chrominance information. Moreover, the contrast is
stretched.

(Step 2) Detection of circular structures (see Section 2.4.1): Two
sets of circles are determined using circular Hough transform (Peng
et al., 2007):

� Automated detection of reference circles R: Reference berries
are image patches which are showing distinct circular struc-
tures. Assuming that the most dominant circles in one image
are berries which can be used as training data in the classifica-
tion process, the circle detector is applied with high constraints,
i.e. the detector returns only very distinct circles.
� Automated detection of berry candidates C: Candidates for

grapevine berries are all image patches which consist of at least
a weak circular structure potentially showing a berry. The can-
didates are extracted by the circle detector using weak con-
straints, i.e. the detector also returns circles with low
responses. The reference set is a subset of the candidate set,
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