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A new equation for the dissipation rate of turbulent kinetic energy is derived exactly in conservative form for a
Generalized Newtonian Fluid (GNF). The transport equations for mass, momentum, and turbulent kinetic
energy are written along to the transport equation for the shear rate. A new transport equation for the
apparent viscosity is derived assuming the viscosity as dependent only on the shear rate. The assumption is of
incompressible two-dimensional GNF flow.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Non-Newtonian fluids are present in several industrial applications
and biological problems, like blood flow. Literature presents many
theoretical solutions andnumerical simulations in laminarflow, including
two papers published by the first author more than 30 years ago [1,2].

Few numerical investigations dealt with turbulent flow of pseudo-
plastic fluids (shear-thinning fluid) because of the lack of models with
one or two point closure and, for this reason, some investigators
performed DNS (Direct Numerical Simulation). Rudman and Blackburn
[3] used the Spectral Element-Fourier Method (SEM) in a duct flow and
compared the DNS results of a power law fluid with small consistency
index and of a Herschel-Bulkley fluid with experimental data [4].
Dimitropoulos [5,6] carried out DNS for a polymeric solution using
FENE-P and Giesekus models with spectral approximation and semi-
implicit algorithm to predict the drag reduction. New results on
Reynolds stresses and pressure are presented in [6], where the
convergence of the pseudo-spectral algorithm is discussed. A non-
refinedmeshand ahigh artificial viscosity are introduced to stabilize the
algorithm. The FENE-P model is used in [7] for a DNS one-dimensional
approach to explain the phenomenon of drag reduction. A turbulent
model for a non-Newtonian power law fluid is developed in [8], in
analogy to the turbulent viscosity, determining the temperature
distribution for soybean milk flowing inside a tubular heat exchanger.

Turbulent flow of a non-Newtonian fluid is important also in medical
field. A model to predict the turbulent flow of a power-law fluid in a bio-
reactor for anaerobic digestion is developed in [9] with the classical k-ε
model and the power-law viscosity. The k-ε equations are derived in

[10,11] for power-law and Herschel–Bulkley fluids using the apparent
viscosity of a non-Newtonian fluid in the RANS equations of a Newtonian
fluid, but the agreement is not good enough. The introduction of the third
invariant of the rate of deformation tensor in the viscosity contributes to
an increase of viscous diffusion and dissipation rate in the turbulent
kinetic energy confirming the dependence of the viscosity on the second
invariant of the rate of deformation tensor in a 2D flow [12]. The
Generalized Newtonian Fluid (GNF) constitutive equation is applied to a
Bird-Carreau fluid in order to derive a k–εmodel for the equations of the
Reynolds stresses tensor, turbulent kinetic energy and dissipation rate
[13]. The viscosity is dependent on the invariants of the rate of
deformation tensor, shear-rate and strain-rate. An algebraic equation is
proposed to correlate the instantaneous viscosity to the dissipation rate
while average viscosity and dissipation rate are correlated with a normal
logarithmic probability distribution of the dissipation rate. The final
equation of dissipation rate is written in non conservative form because
two derivatives are present, one for the dissipation rate itself and the
other for the average dynamic viscosity.

Direct Numerical Simulation of viscoelastic fluids in turbulent channel
flow is carried out using the FENE-P model to find relationships between
flowandfluid rheological parameters [14]. Threedifferent regimesof drag
reduction, namely low, high and medium are identified proposing
mathematical expressions for the eddy viscosity in the three regimes. A
procedurebasedon theDNSpredictionsof thebudgets ofmomentumand
viscoelastic shear stress is developed to evaluate themeanvelocityprofile.
A RANS model is employed using the FENE-P constitutive relationship to
describe the rheology of polymer-induced turbulent drag reduction [15].
Correlations among flow and polymer conformation variables are
identified by analyzing recent DNS results of dilute polymer solutions.

The present work is aimed to derive the equation of the turbulent
dissipation rate in a conservative form for an incompressible GNF in 2D
(two-dimensional)flow. Viscosity is depending on shear-rate, as shown
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in [12] in a 2D flow and done in all the papers found in the literature,
without an explicit statement of the relation with the shear-rate. A 2D
theory of turbulence has been developed since the 70's in [16–20]
despite the differences with the real 3D flow and the absence of vortex-
stretching terms. It is also affirmed in [21] that it seems natural to
investigate the behavior of a 2Dflow, in the hope that it sheds some light
on an “almost” 2D turbulence. Due to the difficulty of deriving the
governing equations directly in a 3D flow, it is considered a guide to
develop first a 2D turbulent model. The importance of studying a 2D
model, which can be generalized in 3D, is also remarked in [12], where
the authors developed anorder ofmagnitude analysis for a 2D turbulent
flow, without loss of generality.

The transport equation of ε is deduced in this work by using a
completely new transport equation for the apparent viscosity and
without a constitutive link between apparent viscosity and shear rate.
No hypotheses are necessary about the dependence of the turbulent
dissipation rate on the fluctuating part of the rate of deformation
tensor, as required in [15], neither a particular statistical distribution
of the average viscosity, as required in [16]. The present procedure
allows obtaining a new transport equation of ε in a conservative form,
more general than that obtained previously in the literature.
Moreover, the conservative form of the ε equation allows avoiding
the calculation of the temporal derivative of the apparent viscosity,
due to the presence of a transport equation for the apparent viscosity.

The paper has the following structure. The transport equations for
the average variables and the turbulent kinetic energy are derived first
and then the transport equation for the shear-rate. The new differential
equation for the apparent viscosity is deduced using the scalar product

of the instantaneous rate of deformation tensor by itself. From this
equation it is possible to derive the equation of dissipation rate in a
conservative form giving a physical interpretation to the new terms.
The method used in this work allows to explain each term under the
classification of transport, production and dissipation terms.

2. Constitutive equation

The present 2D analysis is carried on for a Generalized Newtonian
Fluid, GNF. The constitutive equation for an incompressible non-
Newtonian fluid is written similarly to a Newtonian one with the
apparent viscosity function of the shear-rate

Tij = −pδij + 2μ appSij; ð1Þ

where Tij is the stress tensor and p the static pressure.
The rate of deformation tensor Sij is

Sij =
1
2

∂ui

∂xj
+

∂uj

∂xi

 !
; ð2Þ

and the shear-rate γ̇ is

γ̇ =
ffiffiffiffiffiffiffiffi
2S2ij

q
: ð3Þ

Defining S as

S =
γ̇ffiffiffi
2

p ; ð4Þ

the shear-rate will be treated as S from now on.

3. Conservation equations of mass, momentum and turbulent
kinetic energy

The conservation equations for the instantaneous variables in a 2D
flow are the followings:
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for the mass, and

ρ
∂ui

∂t + ρuk
∂ui

∂xk
= − ∂p

∂xi
+

∂
∂xk

2μ appSik
� �

; ð6Þ

for the momentum.
Each instantaneous variable is decomposed into a mean and a

fluctuating component

ui = Ui + ui′; ð7Þ

p = P + p′; ð8Þ

μapp = μ app + μ′app: ð9Þ

The mean component of the stress tensor, Eq. (1), becomes

Tij = −Pδij + 2μ appSij + 2μ′appS′ij ; ð10Þ

and the fluctuating one

T′ij = −p′δij + 2μ′appSij + 2μ appS′ij + 2μ′appS′ij−2μ′appS′ij : ð11Þ

The third term of the mean component, Eq. (10), is due to the
viscosity fluctuations while different combinations of mean and

Nomenclature

Latin
k mean turbulent kinetic energy
k′ instantaneous turbulent kinetic energy
p instantaneous static pressure
P mean static pressure
p′ fluctuating static pressure
S variable defined in Eq. (4)
Sij rate of deformation tensor
Sij mean rate of deformation tensor
S′ij fluctuating rate of deformation tensor
$ variable defined in Eq. (20)
Tij
R mean Reynolds stress tensor

Tij
μ mean polymeric stress tensor

Tij
R′ instantaneous Reynolds stress tensor

Tij
μ′ instantaneous polymeric stress tensor

t time
ui instantaneous i-velocity component
Ui mean i-velocity component
xi i- coordinate

Greek
γ̇ shear rate
δij Kronecher delta
ε mean dissipation rate
ε′ instantaneous dissipation rate
μapp apparent viscosity
μapp mean apparent viscosity
μ′app fluctuating apparent viscosity
ρ density
Ωij rotation rate tensor
Ωij mean rotation rate tensor
Ω′ij fluctuating rotation rate tensor
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