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A B S T R A C T

Steinschneider et al. (2017) investigate model choices made in the hierarchical climate reconstruction approach
of Schofield et al. (2016). We identify two flaws in their approach. The first is the use of an unusual approx-
imation to Bayesian inference that unnecessarily discards important information. The second is that they mis-
characterize the robustness of their reconstructions due to overlooking important features of the out-of-sample
predictions. We demonstrate how full Bayesian inference can be conducted with no additional effort, providing
R/JAGS code. We also show how graphical visualization of the out-of-sample predictions can lead to better
understanding and comparison of the models fitted.

1. Introduction

Steinschneider et al. (2017) investigate the use of hierarchical
Bayesian models for reconstructing temperature. Using the framework
of Schofield et al. (2016) they explore the effect of various modeling
assumptions on the reconstruction of held-out temperature observa-
tions. These assumptions include partial pooling of parameters, a
common variance among trees, and autocorrelation in the observations.
They also consider the effect of alternative ageing functions. Among
other things, they conclude that including autocorrelation “significantly
degrades performance” (p. 182).

We identify two flaws in their approach of Steinschneider et al.
(2017). The first is the manner in which the statistical models are fitted.
The authors have used an unusual approximation to Bayesian inference
that unnecessarily discards important information. The second is the
way in which out-of-sample predictions are assessed and interpreted.
We argue that important features are missed that have implications for
the conclusions drawn regarding the robustness of the various models
considered.

It is important to distinguish between the statistical model specified
and the method of model fitting used to estimate parameters and pre-
dict unobserved random variables. We show how some of the models
considered by Steinschneider et al. (2017) are probabilistically identical
but differ according to the method of model fitting. Separating these
issues allows us to better understand the role of model fitting distinct
from model specification. We use this insight to offer general model

fitting strategies.
In Section 2 we review model M2 of Steinschneider et al. (2017) and

the data we use here. We use model M2 as a base model to evaluate
their approach. In Section 3, we first introduce and overview aspects of
Bayesian inference. This allows us to critically evaluate the modeling
approach of Steinschneider et al. (2017). We conclude in Section 4 with
a discussion of the out-of-sample prediction procedures used and the
implications for the robustness of the models considered.

2. Data and model

The ring width measurements, denoted yit, are observed for M trees
across T years. The variables fi and li denote the first and last years in
which tree i was observed. Climate data xt are available for the final
T − t0 + 1 years for which we have observed ring width data. The
variable ageit denotes the age of tree i in year t. Throughout this
manuscript we refer to model M2 of Steinschneider et al. (2017) that is
defined as,
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where ind denotes a conditionally independent random variable and
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the observations xt are missing for t= 1, …, t0 − 1. The terms βi0 and
βi1 are tree-specific parameters that describe the age-related effect on
tree growth. The random variable ηt is the yearly influence on tree
growth that is common between trees. The climate variable xt influ-
ences ηt and is weighted by β2. The parameters μx and σx

2 describe the
marginal model for the climate variable through time.

We use the Torneträsk ring-width data used in Schofield et al.
(2016), with 247 series spanning the years 1496–1995. These data
slightly differ from that of Steinschneider et al. (2017), who despite
claiming to use the same data as in Schofield et al. (2016) consider a
series from 1497 to 1997.

We use the same Tornedalen temperature series used by
Steinschneider et al. (2017). The only difference is that we do not
consider the data from 1996 and 1997. We separate the temperature
data into two groups for out-of-sample assessment, with observations
from 1906 to 1995 used for calibration and we hold-out data from 1816
to 1905 for validation.

We follow Steinschneider et al. (2017) and apply a Box–Cox power
transformation. However, it is not clear how this transformation was
applied by Steinschneider et al. (2017) as there are several possibilities.
One is to apply the transformation to the raw data yit. Another is to
apply the transformation taking into account a model with temperature
and tree-specific age effects as in (1). This latter approach is preferable
as it is error terms that we assume follow a common normal distribu-
tion. This is challenging, as the temperature variable is partially ob-
served and the full model would have to be fit many times to evaluate
the best transformation. Instead, we use only the data from the cali-
bration period (we used data from 1816 to 1995) to find the best data
transformation (λ = 0.22) for a linear model with temperate and tree-
specific age effects. On the power transformation scale, this is between
the log and square root transform. The data are available online as
outlined in Appendix C.

3. Bayesian modeling

3.1. Background

Bayesian modeling distinguishes between known (observed) and
unknown (unobserved) variables. Given known variables k, we wish to
find p(u|k), the probability distribution of the unknown variables, de-
noted u. For inference, the posterior distribution p(u|k) fully describes
our knowledge about u given the information at hand. Typically this is
described in terms of summaries of p(u|k), such as the mean and
quantiles.

In statistical applications, the knowns are usually data y and the
unknowns are parameters θ, leading to

∫
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For any particular set of data y, the denominator p(y) is a constant and
so we commonly write

∝p θ y p y θ p θ( | ) ( | ) ( ). (2)

To find the posterior distribution in (2) two things are required; (i)
the probability model for y, denoted p(y|θ) and commonly referred to as
the likelihood, and (ii) a prior distribution for θ. The normalizing
constant

∫=p y p y θ p θ dθ( ) ( | ) ( )

is difficult to find in closed-form for all but the simplest models. As a
consequence, it is common to avoid calculation of p(y) and instead draw
correlated samples from p(θ|y) using Markov chain Monte Carlo
(MCMC), see Gelman et al. (2014) for details. We use these samples to
estimate features of the posterior density, such as the mean or quantiles.
There are numerous MCMC algorithms in common use, including Gibbs

sampling (Geman and Geman, 1984), the Metropolis–Hastings algo-
rithm (Metropolis et al., 1953; Hastings, 1970) and slice sampling
(Neal, 2003).

In practice, modeling is often more complicated than presented in
(2). It is common that the unknowns include missing data and latent
variables in addition to the model parameters. It is straightforward to
include such extensions in (2). For example, if we model y in terms of
latent variables ξ that themselves depend on parameters θ, then (2)
becomes

∝p θ ξ y p y ξ p ξ θ p θ( , | ) ( | ) ( | ) ( ). (3)

While additional challenges can arise, it is straightforward to
sample from p(θ, ξ|y) using MCMC.

3.2. Models vs methods of estimation

Bayesian inference refers to the approach where we use the pos-
terior density in (2) or (3) to make inference (e.g., see Gelman et al.,
2014). Bayesian inference is an extensively studied and well understood
approach. It is the only approach to statistical inference that is fully
consistent with axiomatic probability theory. Various approaches that
approximate p(θ|y) exist and are typically less well understood. One
such approximation is empirical Bayes (Carlin and Louis, 2009).

Empirical Bayes is considered in models such as (3), where ξ is of
interest and θ are nuisance parameters. Bayesian inference about ξ in
(3) averages across θ
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Empirical Bayesian inference does not average over θ but uses the so-
called estimated posterior distribution of ξ for inference,

p ξ θ y( | ˆ, ),

where θ̂ is some estimate of θ, typically obtained from the marginal
distribution p(y|θ). If the models p(y|ξ) and p(ξ|θ) are chosen carefully
then it can be relatively straightforward to find closed-form expressions
for both the marginal distribution p(y|θ) and estimated posterior
p ξ θ y( | ˆ, ). In this situation, it is fast and easy to fit the model using
empirical Bayes, even for large datasets. In contrast, Bayesian inference
requires us to sample from p(ξ|y) using a time-consuming method such
as MCMC.

Empirical Bayes is usually only considered when approaches for
sampling from the posterior distribution are prohibitively difficult or
time consuming. Care is needed using empirical Bayes as the variance
of p ξ θ y( | ˆ, ) is smaller than the variance of the true posterior p(ξ|y) (see
e.g. Carlin and Louis, 2009, p. 244). Using p ξ θ y( | ˆ, ) in place of p(ξ|y)
will lead to interval estimates that are narrower than they should be.
The error in approximation can vary according to the model assumed
and the data set used, which places the burden on the researcher to
ensure that the approximation is reasonable for their data and model.

3.2.1. Approximate Bayesian methods: empirical Bayes vs Bayes
Steinschneider et al. (2017) used MCMC to generate samples from

the posterior density of the parameters in model M2, the model de-
scribed in (1). They then ignore the MCMC samples of xt, t= 1, …,
t0 − 1 and instead sample from an approximate posterior (p. 179),
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This is unusual because the xt values they ignore can be treated as
samples from the posterior distribution p(xt|data) and provide the best
information about the unknown climate values xt that we have, given
our data. To then ignore them amounts to discarding information and
making inference that is weaker at best and potentially misleading. The
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