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The spatial distribution of biomass is key to optimize forest inventory designs to estimate forest aboveground
biomass. Point process theory sets an appropriate mathematical framework to model the spatial distribution of
trees, then to derive analytical expressions for the relationship between the variance of biomass in plots and the
characteristics (size and shape) of plots, possibly accounting also for plot autocorrelation in biomass. Models
derived from point process theory provided a better fit to data from twenty spatially homogeneous sites in
tropical rain forests than the commonly used Taylor power model for biomass variance. The model CV =
Jw + x/1Al with CV the coefficient of variation of biomass, |Al the plot area, and w and x parameters to estimate,
provided in particular a better fit than the power model when the range of autocorrelation in biomass was
greater than the plot width. The twenty tropical forest sites greatly differed in the observed relationship between
biomass variance and plot size, reflecting differences in the spatial pattern of biomass according to the fitted
point process. Accordingly, optimized forest inventory designs also greatly differed between forest sites, with
positive biomass autocorrelation favouring cluster sampling design with a distance between subplots in the order
of the range of the biomass autocorrelation. In a spatially heterogeneous context consisting of different homo-
geneous forest strata, large-scale heterogeneity prevailed upon local biomass autocorrelation in determining the
optimized plot size and shape. If uncontrolled through stratification, large-scale heterogeneity resulted in much
smaller (approximately 0.1-0.2ha) optimized plot sizes than the homogeneous case (approximately 1-2 ha).

1. Introduction generally defined as the product of the relative variability and relative

cost (Wiegert, 1962):
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Forest inventory provides information necessary for forest man-
agement or for designing evidence-based forest policies at different
scales. The important role played by forests in mitigating and adapting

to climate change, as repositories of biodiversity and as ecosystems to
combat desertification at national and global scale has put additional
emphasis on the necessity to have reliable forest monitoring systems at
national levels, with forest inventories being again at the core of these
monitoring systems (FAO, 2017). Sampling designs when performing
field inventories in forests are not equally efficient, and searching for
optimized designs has long been addressed by foresters (Ranneby et al.,
1987; Schreuder et al., 1993; Mandallaz, 2008; Fattorini, 2015). Opti-
mization refers to different trade-offs to be solved, such as the trade-off
between the number and size of plots, which depends on another nested
trade-off between within-plot and between-plot variability (Hall et al.,
1998). Solving trade-offs is further complicated in multipurpose in-
ventories that involve simultaneous optimization of goals (Scott, 1993).

Optimization aims to maximize some relative efficiency that mea-
sures the information gained per unit effort expended in sampling, and
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where CV(A) is the coefficient of variation (CV) of the target population
attribute using sampling unit type A, C,(A) is the associated sampling
unit-level cost, while A = 1 indicates some basis sampling unit of re-
ference. The most appropriate sampling unit size is the one that mini-
mizes e, i.e. when e < 1, sampling unit A is more efficient than the re-
ference sampling unit 1 (Zeide, 1980; Husch et al., 2003; Kohl et al.,
2006). Both CV and unit cost are dependent on the sampling unit size
and shape, and on the target population attribute such as stock density,
biomass, carbon or biodiversity, so that minimizing e determines the
overall configuration of the sampling units.

A key element to know in order to optimize the efficiency is the
relationship between the CV and the sampling unit. We hereafter focus
on sampling designs whose units are fixed-area plots, possibly con-
sisting of several subplots (cluster design, where a plot is a cluster of
subplots). A classical formula for modelling the relationship between
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the CV and A is the power model, also known as Taylor’s law (Smith,
1938; Taylor, 1961; O’Regan and Arvanitis, 1966):

CV(4) = CV(1) x |AI# 2

where |Al is the area of the sampling plot expressed in units of the re-
ference sampling plot and 8 a real-valued exponent. The value of
depends on the forest characteristics but also on the geometry of the
reference sampling plot. When the spatial distribution of trees is com-
pletely random with no spatial correlation in the plot-level population
attribute, 8 = 0.5. This value has also been used as a default value for 8
when little information was available on the spatial distribution of trees
(Freese, 1961; Zeide, 1980). Then only the value of CV(1) needs to be
estimated, which can be obtained from a pre-inventory consisting of a
few reference sampling plots. The assumption of a constant 8 implies
scale-invariance in biomass variation due to a lack of spatial structure
(Muller-Landau et al., 2014). Yet, tropical forest biomass is known to
present characteristic scales reflecting differential clustering patterns in
tree size (Plotkin et al., 2002). Hence, the assumption may not ne-
cessarily hold true across all scales.

Optimizing the sampling efficiency with respect to both plot size
and shape requires a more comprehensive description of the way CV
varies with size and shape. For cluster designs where a sampling plot
consists of several subplots separated by a given distance, testing dif-
ferent subplots configuration in the field can be a way to directly
compare the efficiency of different cluster designs (Yim et al., 2015),
and a key descriptor in this case is the covariance function that de-
scribes the autocorrelation between two subplots at a certain distance
from each other (Cochran, 1977; Kleinn, 1994, p.219). Previous studies
have shown that the most efficient cluster designs are obtained when
the distance between subplots is of the order of the range of the cov-
ariance function (Yim et al., 2015).

Implementing pre-inventories in the field to establish the relation-
ship between the CV and the sampling plot as a prerequisite for design
optimization can be costly, and an alternative consists in mapping the
target attribute at the forest scale and then virtually implementing the
forest inventory. This approach has great flexibility as any type of in-
ventory based on sampling units of any size and shape can be simulated,
but it requires the forest map to be realistic. Satellite images combined
with field measurements have been used to produce such maps of forest
attributes for design optimization (Tokola and Shrestha, 1999). Forest
simulators that produce virtual forest stands have been used for that
purpose too (Mackisack and Wood, 1990; Brink and Schreuder, 1992).
Large research plots have also been used to derive the relationship
between CV and plot size using nested grids of plots that partition the
large plot (Wagner et al., 2010; Réjou-Méchain et al., 2014). One dif-
ficulty in this case is to predict the CV for plot shapes that are different
from the grid, and another is to account for biomass correlation among
plots.

The current study aims to derive the CV for any plot size and shape
based on the population characteristics, and to apply this expression of
the CV to the optimization of the plot design of a forest inventory. We
mainly considered the case of an homogeneous forest, thus for an in-
ventory of limited spatial extent, even if the heterogeneous case con-
sisting of different homogeneous strata is also addressed. The theore-
tical framework to derive the CV is the point process theory that models
the spatial distribution of trees as the outcome of a stochastic process
(Cressie, 1991). We will show that the covariance function as defined
by Kleinn (1994) can also be analytically derived from the point pro-
cess, thus providing a consistent analytical framework to compute the
influence of the distance between subplots in a cluster design on the
design efficiency. To our knowledge, this analytical framework based
on point process theory is novel for design optimization of forest in-
ventories. We will focus on biomass as the target population attribute
given its current importance in climate change issues, and will focus on
tropical forests given the lack of design optimization studies for those
forests. We used previously published data at twenty fully studied
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tropical forest sites (Réjou-Méchain et al., 2014).
2. Materials and methods
2.1. Forest types and data

We relied on the data published by Réjou-Méchain et al. (2014)
giving the CV of biomass for different square plot sizes in different
forests (see Tables S1 and S2 in Réjou-Méchain et al., 2014). We used
data only from tropical forests, with 20 different sites in Africa, America
and Asia. Réjou-Méchain et al. (2014) fitted the power model (2). Based
on the value of the 8 exponent, forests can be classified into three ca-
tegories that reflect the type of spatial pattern of trees: § = 0.5 corre-
sponds to complete spatial randomness, 8 > 0.5 to regular patterns, and
B < 0.5 to clustered patterns. The latter situation is the most common in
natural forests. Accordingly, the 20 forests studied by Réjou-Méchain
et al. (2014) could be ranked from the most regular (Ituri Edoro 1,
Paracou) to the most clustered (Yasuni, Xishuangbanna, Palanan, Sin-
haraja, etc.) with intermediate forest types close to random (Ituri Lenda
2, Ituri Edoto 2, Manaus, etc.).

All the plots used by Réjou-Méchain et al. (2014) to get the CV data
were square subplots that partitioned a single large rectangular or
square plot (with a size ranging from 9 ha to 50 ha depending on the
forest), as shown in Fig. 1. Because positive spatial autocorrelation in
biomass is most often observed (Réjou-Méchain et al., 2014), subplots
that partition a large plot are not independent and the CV of biomass
computed from these subplots is less than what would be obtained with
independent plots. This issue, as well as the issue of generalizing the
CV-size relationship to other plot shapes than the square, were si-
multaneously solved by considering a latent model for the spatial dis-
tribution of trees, enabling us to explicitly account for spatial correla-
tion between subplots and to adapt to any plot shape.

2.2. Coefficient of variation of biomass: homogeneous case

We first consider the case of an homogeneous forest. The latent
model that we used to derive the expression of the CV of biomass is a
marked point process where the position of a point is the location of a
tree and the mark is the tree biomass (Cressie, 1991; see also Appendix
A). To reflect the homogeneity of the forest, the point process con-
sidered in this section is homogeneous and isotropic. The biomass M of
a plot A is the sum of the biomasses B of the trees found in this plot. In
the jargon of point process theory, the plot biomass is a mark sum
measure (Stoyan, 1984; Cressie, 1991, p.713-714). The mean plot
biomass then is E(M) = AIAI E(B), while the covariance of plot biomass
between two (possibly overlapping) plots A; and A, is (Cressie, 1991,
p-713; see also Appendix A):
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+ 114, N A;| [Var(B) + E(B)?] 3)
Alq A2q Aq’q
Aqg | Ago Aq’2
Ay | An Aq’l

Fig. 1. Partition of a large square (g = q') or rectangular (¢ # q’) plot into non-
overlapping square subplots A;;. Subplot indexes are based on row and column
numbers.
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