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A B S T R A C T

Competition between individual trees is a major factor influencing the development of forests. However, due to
the complexity of such interactions, that span over vast geographic areas, systematic analysis of competition has
only recently become possible through the concepts of so-called predictive analytics. The rationale behind the
utilised approach is that a prediction model, which is capable of forecasting future increments of tree devel-
opment parameters accurately, contains knowledge about the underlying relationships that govern them. The
analysis of such model, therefore, holds the potential to reveal new insights into the critical factors that influence
forest developments. Within this study, we utilise an Evolutionary Algorithm in order to enable predictive
analytics based on a complex-network representation of competition. This allowed us to study the patterns
related to spatial distribution of individual trees. We discovered that triplets of competing trees, and their be-
tweenness centralities, have significantly greater influence on the development of each individual tree than
traditionally observed parameters like the number of a tree’s competitors and distances between them. While
this indicates preferable spatial patterns for optimal forest development, the introduced methodology proved to
be an efficient predictive analytics tool that allows for their discovery.

1. Introduction

Network-based analyses are becoming one of the main trends in the
studies of biological communities and interactions between individuals
(Jacoby and Freeman, 2016). The theory of complex networks was al-
ready used to unveil new insights into various ecological processes
(Proulx et al., 2005; Urban et al., 2009; Dale and Fortin, 2010; Bohan,
2016). Early approaches into the subject, such as (Bascompte et al.,
2003), mostly examined plant-animal mutualistic networks. Fortuna
and Bascompte (2006), developed a patch-model to describe plant-an-
imal communities and explored their persistence, while Fontaine et al.
(2011) outlined a conceptual framework for studying networks com-
posed of more than one type of interaction. The latter demonstrated an
improved understanding of the patterns and processes taking place in
biological communities. Subsequently, network-based approaches have
gained their popularity in studies of social interactions in animal
groups. A review of emerging issues related to animal social networks
was presented by Kurvers et al. (2014) through a discussion on the
effects of social network structure on evolutionary dynamics and social
evolution. While network-based studies have also been used for

examining the behaviour of sharks (Guttridge et al., 2010; Wilson et al.,
2015) and defining social shark communities (Jacoby et al., 2010;
Mourier et al., 2012), this contextual interaction aspect has, surpris-
ingly, been ignored for years in plant competition research, as reported
by Nakagawa et al. (2016). Despite their obvious importance, the net-
work-based analyses have, thus, only recently been emerging in the
studies of plant societies and the competitions within them (Kikvidze
et al., 2011).

Guimarães et al. (2011) exposed the role of networks of interacting
plant-animal assemblages in shaping co-evolutionary processes, while
Poisot et al. (2012) used complex networks for describing the varying
species’ interactions trough space and time. Golubski et al. (2016) de-
monstrated the influences of the real-world coffee agroecosystem on the
environment, and vice versa. Lately, Nakagawa et al. (2016) used
complex network analysis to reveal some essential properties of com-
petition among individuals in an even-aged multi-individual stand of
the Sakhalin fir (Abies sachalinensisan). The role of individual nodes
(and their removal) has been examined in studies on the context-de-
pendencies (Golubski et al., 2016) and plant interactions (Brose et al.,
2005), while the dimensionality of the network (trait-axes) has proved
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to play a critical role in predicting the interactions between species in
different ecological networks (Eklöf et al., 2013). It has, furthermore,
been shown, that the strength of interactions between species influ-
ences the structure and dynamics of ecological systems strongly
(Vazquez et al., 2015). However, while we are witnessing a global
growth of pressures on natural resources, the need to understand and
mitigate the impacts on the environment is becoming increasingly im-
portant (Evans et al., 2013). Consequently, utilisation of complex net-
works for environmental modelling and predictive analytics is coming
into focus. Several attempts have already been made towards achieving
this goal.

Jeger et al. (2007) proposed a network-based model for spreading of
plant diseases in order to achieve their efficient prevention, while
several studies in biology (Tarca et al., 2007), microbiology (Škraban
et al., 2013), and ecology (Tamaddoni-Nezhad et al., 2015) have ex-
plored the possibilities of machine learning for discovering of new
knowledge about the natural phenomena. Unfortunately, the use of
these traditional techniques is still limited. While the methods like ar-
tificial neural networks and support vector machines result in unin-
terpretable prediction models that do not allow for knowledge dis-
covery (Devos et al., 2009), classifiers like decision trees (Škraban et al.,
2013) and random forests (Mascaro et al., 2014) do not allow for
quantifying the relationships between the observed variables
(Nokelainen et al., 2007). In order to overcome these limitations, a new
complex network-based analysis was developed, and is presented in this
paper.

The objectives of this study were (1) to test a complex network-
based analysis method for predicting growth of individual trees using
the concepts of machine learning (Muys et al., 2010) and (2) to propose
a new regression analysis, which allows for human interpretation and,
thus, enables knowledge discovery. The rationale behind the proposed

approach is that a prediction model, which is capable of foreseeing
radial and height increments of individual neighbouring trees in a forest
accurately, contains knowledge about the underlying ecological inter-
relations that govern it. A new algorithm was, therefore, designed that
enabled the extraction and quantification of those relationships be-
tween the determinative topological metrics of tree competition. That
allowed for making accurate predictions about future growth of each
individual tree in several different uneven-aged multi-layered forests.
We show that the interpretation of such prediction model may reveal
new insights into the forests’ dynamics, in particular, the role of com-
petition among trees within them. The proposed approach could, thus,
assist in foreseeing future growth of individual trees or forest stands
and, consequently, support the decision-making processes in forest
management by advancing on the known concepts of the predictive
analytics (Lexer et al., 2005; Shmueli and Koppius, 2011).

2. Material and methods

2.1. Field data

The field data used in this study (see Tables 1–3) are a part of the
monitoring network of the Intensive Monitoring of Forest Ecosystems
provided by the Slovenian Forestry Institute (Vilhar and Žlindra, 2017),
which is included in the International Co-operative Program on As-
sessment and Monitoring of Air Pollution Effects on Forests (ICP For-
ests), the United Nations Economic Commission for Europe Convention
on Long-Range Transboundary Air Pollution (De Vries et al., 2003;
Dobbertin and Neumann, 2010). For the purposes of the study, data
from ten natural forest ecosystem plots (of size ×50 m 50 m) were ex-
amined at different ecological regions with different composition of tree
species, as well as the stand structures. In accordance with the ICP

Table 1
Proportion of tree species per forest plot.

Tree species mixture

Forest ID Ecological region Picea abies Abies alba Pinus nigra Pinus sylvestris Other coniferous Fagus sylvatica Quercus robur Other broadleaves
[%] [%] [%] [%] [%] [%] [%] [%]

1 Alpine 100 – – – – – – –
2 Dinaric – – – – – 100 – –
3 Sub-Mediterranean – – 89 – – – – 11
4 Pre-Alpine 0.2 – – 95.5 – – 2.4 1.9
5 Dinaric – – – – – 84.7 – 15.3
6 Pre-Alpine 9.6 – – 1.9 1.4 77.4 – 9.7
7 Dinaric – 18.2 – – – 62.6 – 19.2
8 Pre-Pannonian – – – – – – 45.3 54.7
9 Pre-Pannonian – – – – – – 70.7 29.3
10 Pohorje 46.4 – – – – 49.7 – 3.9

Table 2
List of forest plots in the years 2004, 2009 and 2014, where min. and max. represent minimal and maximal dbh value of a tree in a plot, accordingly, while σ is the
corresponding variance, dbh is quadratic mean of tree diameters at 1.3 m height and dbhΔ is average five year increment.

2004 2009 2014

Forest ID min. max. σ dbh dbhΔ min. max. σ dbh dbhΔ min. max. σ dbh dbhΔ
[cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm]

1 33.6 70.3 7.2 50.1 − 37.7 73.4 7.1 51.3 1.01 38.2 74.8 7.2 52.7 1.23
2 5.9 47.4 7.7 33.7 − 5.1 48.7 9.4 33.7 0.58 5.7 49.5 9.8 34.2 0.62
3 5.3 53.1 13.6 24.2 − 5.7 53.5 13.7 14.9 0.46 5.1 53.5 13.4 25.3 0.53
4 9.6 44.3 7.2 27.8 − 5.1 46.1 9.2 19.1 1.43 5.1 47.8 12.1 28.8 1.32
5 5.6 48.9 12.3 29.7 − 6.1 50.3 12.6 24.1 0.79 6.4 51.9 12.9 32.3 0.76
6 10.3 54.4 8.5 27.1 − 12.9 54.4 8.5 28.9 0.61 12.9 54.8 8.6 29.7 0.52
7 5.7 72.3 14.7 27.8 − 5.1 73.2 16.3 30.2 0.63 5.1 75.1 15.5 25.9 0.57
8 5.3 82.2 19.3 35.8 − 6.4 84.1 19.2 40.5 0.78 7.1 85.6 19.8 41.7 1.11
9 5.7 64.3 14.7 26.1 − 5.9 70.1 15.9 28.7 0.81 5.9 74.3 16.5 29.6 1.01
10 − − − − − 10.1 65.3 12.9 37.8 − 11.1 66.8 12.9 39.1 0.86
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