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Editorial

Accounting for scale and randomness in patterns of forest responses

1. Introduction

The science and practice of forest ecology and management rely on
the use of statistical analyses to understand the processes and patterns
of forests over time and across landscapes. Powerful, sophisticated
approaches to statistical examination of data are necessary for accurate
and precise insights. Sometimes a focus on details of techniques can be
undermined if insights from a true pattern are misapplied to a different
scale, or when important characteristics of sampling and distributions
are overlooked. Three case studies in this editorial examine some of
these challenges, in hopes of reducing some occasional errors of inter-
pretation in manuscripts. The first case examines how the response of
forests across a geographic area may not provide a good representation
of the response of individual forests. The second explores how resam-
pling a population can erroneously suggest that large reductions in
values occurred for sites that previously had high values, while in-
creases occurred in sites with low values (the null expectation of re-
gression to the mean). The last case shows how statistical designs that
test for differences in means may be over interpreted if the distributions
are contrasted without adequately considering null expectations.

2. Case 1. Patterns across sites may not apply within sites: growth
responses of Eucalyptus to water supplies

The growth of most forests is limited commonly by the supply of
water. Forest growth typically increases in wetter years, in response to
irrigation, and across geographic gradients of increasing precipitation.
How much would growth of a stand change if water supply increased by
100mm yr−1? A first approximation might be based on the increase in
growth for a wet year compared to a normal precipitation year. A
Eucalyptus plantation in Bahia, Brazil showed a strong increase in
stemwood growth for a wet year, increasing by 3.2Mg ha−1 yr−1 for a
100-mm increase in water supply from rain (Fig. 1; Stape et al., 2008).
It might be tempting to expect that irrigation during a normal (or dry)
year would give a similar response, but in fact the response to irrigation
during a normal precipitation year was only 2.4 Mg ha−1 yr−1 for a
100-mm increase in water input. An extrapolation from the precipita-
tion effect between years to the irrigation effect within a normal pre-
cipitation year would have overestimated growth response by one-
third.

The growth of Eucalyptus plantations across geographic gradients in
precipitation might be expected to match these within-site responses to
water supply, but in fact the growth responses to increasing precipita-
tion across Brazil were only 1.5Mg ha−1 yr−1 for each 100-mm in-
crease in precipitation (Binkley et al., 2017, based on 27 sites with 12

clones are each site). The extrapolation from within-site responses,
based on either irrigation or rainfall, would overestimate the geo-
graphic rainfall effect by 60% to more than 100%.

Growth responses to water supply are moderated by temperature
and humidity. Atmospheric vapor pressure deficits may be higher on
drier sites than wetter sites, limiting the ability of trees to respond to
increases in soil water availability. Geographic locations with low
rainfall are often warmer with greater vapor pressure deficits that
would likely constrain the ability of trees to respond to increases in soil
water availability.

This example could also be turned around. The response across the
geographic gradient of precipitation might be used to infer the likely
response within a single site. The example in Fig. 1 shows this would be
poor estimation of the actual response to precipitation or irrigation for
this single site. The prediction of responses at single sites is always more
uncertain than the responses of many sites, as the local details (geno-
type, temperature, humidity, soil, silviculture and other factors) shift
the observed value through the broad range of the variance of the
overall population. Extrapolation across scales, from single sites to
populations and vice versa, may have some value. However, the fun-
damental importance of confounding factors always warrants explicit
consideration. (This issue is an example of a problem that is sometimes
called Simpson’s Paradox.)

3. Case 2. Resampling may lead to random patterns that look
suspiciously like signals: accounting for regression to the mean in
tracing changes in soil carbon

A core aspect of statistical analysis is that the value for an ob-
servation depends on both a signal and noise. A signal might be the true
effect of an experimental treatment. Noise might result from a variety of
sources, including variation in properties within a population, or from
factors not examined in the experiment. If the ratio of signal to noise is
high, we have confidence that an experimental factor influenced the
size of the value we observed. When the noise is large relative to the
influence we can attribute to an experimental factor, we acknowledge
that the experiment does not lend support for the original hypothesis.

These issues of signal and noise are of course at the heart of classical
statistics, but in some cases it’s surprising that “noise” may appear as an
impressive pattern rather than a diffuse cloud of data points. A recent
paper in a top science journal examined how heating of forest soils
might lead to increases or decreases in the pool of carbon stored in the
soils. The authors concluded there was a gain of carbon when heated
soils had initially low levels of carbon, but that soils with high carbon
initially lost carbon. Should we be confident that soils high in carbon
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will show higher losses of carbon as climates warm? Aside from chal-
lenges posed in warming soils in a realistic way, this question needs to
be considered carefully for the possible effect of noise. A well-known,
commonly overlooked issue in determining changes over time is called
“regression to the mean” (see for example, Barnett et al., 2005).

A sampling approach typically defines a population of inference,
and samples are then taken from that population (often at random) to
determine characteristics such as the mean and the dispersion of ob-
servations around the mean (the variance). Statistical tests can contrast
sets of sample from two populations (perhaps one a control, and one
subjected to an experimental treatment) and give a probability that the
samples come from different populations (such as whether a treatment
effect was significant). If we ask whether the carbon content of soils
from multiple sites changed over time, the two populations being
compared come from the same sites but at different times. If classical
statistical tests show that we can be confident the soils changed over
time, we might then be curious if some soils changed more than others,
and ask questions like the one above about whether the change in
carbon related to the initial carbon content of a site’s soil.

This is the question asked by Cook et al. (2016). They sampled over
300 locations across Brazil for the carbon content of soils (0–30 cm
depth), and repeated the sampling after 3 rotations of Eucalyptus
plantations. Across all sites, the average change in soil C was a decline
of 0.22Mg ha−1 yr−1. Did sites with higher C contents show higher
losses? A plot of the change in soil C as a function of the initial soil C
content (Fig. 2) showed that a site that started with a very low amount
of C (such as 10Mg ha−1) tended to gain C (about 1Mg ha−1 yr−1). A
site that initially had high C (such as 60Mg C ha−1) tended to lose C (a
change of −1Mg ha−1 yr−1). This trend was very robust, with an r2 of
0.56; the probability of the relationship was only random (the P value)
was less than 10−50.

The value for the change over time for each site included a true
signal: the actual change for the site. Each value also included noise,
including random variation in how well the sampled soil represented
the true value for each site. In the original sampling, a site may have
had a high value because of a combination of true soil C content and
random error. The resampling would again be influenced by the true
value for each site, along with the random noise associated with the
sampling. The key point is that a site that truly had a high C value in the
first sampling would likely have a high C value in the second sampling,
but a site that had a high value originally because of random noise
would not repeat with a high value. The signal would remain the same
between samplings (plus or minus any real change in the true value),
but the noise would be randomly redistributed across the sites giving

lower values for formerly high-value sites, and higher values for for-
merly low-value sites.

Could this regression to the mean be responsible for the change in
soil C observed across the 300 sites? This question was raised by Mats
Olsson at the Swedish University of Agricultural Sciences, and Cook
et al. (2016) examined the expected pattern of change that might result
from only random variations among the 300 sites. They took the initial
value for each site and then created a random number for the “re-
sampled” value. A column of numbers for the resampled values was
generated using the overall mean of the 300 sites, and the standard
deviation. The differences between the initial values and the randomly
created new values showed the expected pattern. Sites with initially
high values in C tended to be matched with random numbers that were
closer to the mean (or below it), indicating soil C declined. Sites that
were initially low in soil C tended to be matched randomly with values
that were closer to the mean (or above it), indicating that soil C in-
creased. A plot of these differences between the real values for the in-
itial soil sampling and the randomly generated “resampled” values was
indistinguishable from the pattern shown by the real resampling of the
sites. Cook et al. (2016) concluded that a pattern that seemed to have a
one in 10−50 chance of being random was indeed the random outcome
of regression to the mean. Sites with high initial soil C were not in fact
likely to have more or less change in soil C than other sites. The van-
ishingly small P value actually gauged the likelihood that 2 sets of 300
random numbers would correlate with each other (which of course is
unlikely), providing a critical indication of the value of considering null
expectations for data sets.

4. Case 3. Null expectations need to be considered carefully: limits
on interpretation of twin-plot and triplet designs

Regression to the mean deals with paired sampling in time, where a
new value is determined for a previously sampled unit. Sampling may
also be paired in space, with adjacent (or split) plots assigned as a
control or a treatment. This paired plot approach can be quite useful,
especially as an inexpensive approach for testing a factor across a
landscape at the scale of management programs (Binkley et al., 2018).
Fertilization responses have been examined as twin-plots (Stape et al.,
2006), and a similar triplet design has been used to see how growth in
mixtures of two species compares with the growth of monocultures of
each species (Pretzsch et al., 2017).

The key feature of a twin-plot or triplet design is that no replication
of treatments is provided within each site; all degrees of freedom are
dispersed across the larger population of inference represented by the

Fig. 1. The growth of Eucalyptus plantations increased by about 1.5Mg for each increase of 100mm across a broad geographic gradient in Brazil (Binkley et al.,
2017). This pattern did not match the size of the response within a single stand, to either supplemental water from irrigation (2.4Mg per 100mm extra water), or to
the response to wetter-than-average weather (3.2 Mg per 100mm, likely because of lower vapor pressure deficits in the wetter year; data from Stape et al., 2008).
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