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a b s t r a c t

The contribution of selected sources of uncertainty to the total variance of model simulation results of
stem biomass increment – calculated from annual stem biomass predictions – of European beech
(Fagus sylvatica L.) was quantified. Sources of uncertainty were defined as the selected variables that
influence the total variance of the model results. Simulations were made: (i) for ten regional climate
models (RCMs) based on the IPCC scenario A1B and providing an ensemble of climate projections up
to 2100; (ii) with two forest model types (FMTYPEs); (iii) for four forest management intensities
(MANFORs); and (iv) for three time windows (TIMEWINDs), each spanning 15 years, starting in 2019,
in 2049 and in 2079. Both models, the empirical SIBYLA model and the process-based ANAFORE model,
were calibrated using experimental tree growth data from four plots in central Slovakia between 1989
and 2003. Three of these plots, representing the four MANFORs, were subject to different prior intensities
of thinning while one was left untouched as a control. The FMTYPE explained most of the total variance in
the simulation results (39.9%), followed by MANFOR (i.e. thinning intensity; 22.2%) and TIMEWIND
(12.0%), while the effect of RCMs on model uncertainty was limited (<1%). Stem biomass increment
results obtained from the two FMTYPES were different in absolute terms, but the models agreed well
in their relative response to RCM, to MANFOR and to TIMEWIND. The total variance of the predictions
was 10 times higher for the process-based model (ANAFORE) than for the empirical model (SIBYLA).
These observations are the reason for the large contribution of FMTYPE to the total variance of the sim-
ulated stem biomass increment results.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

As trees grow old, forests unavoidably face the impact of immi-
nent climate change. Forest management measures can contribute
significantly to mitigation of and adaptation to these environmen-
tal changes. Conventional statistical models implicitly based on the
assumption of stationary conditions may not be applicable for for-
est management decisions, but novel and improved process-based
models predict forest growth under changing conditions. Manage-
ment plans developed using either type of model require appropri-

ate risk assessments (Walker et al., 2003). Uncertainty analysis of
forest model results is thus crucial to support management deci-
sions. The model uncertainties partly originate from input vari-
ables, including data required for the model set-up and the
calibration, as well as from climate and forest management predic-
tions. Uncertainty is also associated with the model boundaries
(i.e., the extent of the ecosystem complex covered by the model),
with the model structure itself and with the model parameters
(Jones, 2000; Reyer et al., 2013). Only a part of this model uncer-
tainty, however, is reflected in the variance of the model results.
Other sources of error may also contribute to model uncertainty,
but may not be quantifiable: either because they are unknown or
because they are not included in the model.

Forest models incorporate aspects of system complexity as well
as the non-linear relations and the feedback mechanisms among

http://dx.doi.org/10.1016/j.foreco.2015.10.048
0378-1127/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author at: Centre of Excellence on Plant and Vegetation Ecology,
Department of Biology, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk,
Antwerp, Belgium.

E-mail address: Joanna.Horemans@uantwerpen.be (J.A. Horemans).

Forest Ecology and Management 361 (2016) 46–55

Contents lists available at ScienceDirect

Forest Ecology and Management

journal homepage: www.elsevier .com/ locate/ foreco

http://crossmark.crossref.org/dialog/?doi=10.1016/j.foreco.2015.10.048&domain=pdf
http://dx.doi.org/10.1016/j.foreco.2015.10.048
mailto:Joanna.Horemans@uantwerpen.be
http://dx.doi.org/10.1016/j.foreco.2015.10.048
http://www.sciencedirect.com/science/journal/03781127
http://www.elsevier.com/locate/foreco


the system drivers (Tian et al., 2012). Over the last three decades
forest models have become more process-driven and they now
incorporate a multitude of parameters (Landsberg, 2003; Matala
et al., 2003). Process-based models (PBMs) integrate the mechanis-
tic functioning of the ecosystem by reproducing the ecological and
physiological processes that drive the system, as well as their
responses to external factors (Landsberg, 2003; Kurbatova et al.,
2008). PBMs are useful tools for understanding the dynamics of
an ecosystem and they can provide answers to questions on how
ecosystems should be managed under changing environmental
conditions (Korzukhin et al., 1996; Matala et al., 2003; van Oijen
et al., 2005). However, having a multitude of parameters does
not necessarily guarantee that the model predictions will be reli-
able (Larocque et al., 2014). The complexity of PBMs can be a
strength, but also a weakness, because they rarely provide a unique
answer to a practical management question (Mohren and Burkhart,
1994; Sands et al., 2000; Matala et al., 2003; van Oijen et al., 2005).
Model improvements can result from a better understanding of the
internal processes of the system, e.g., carbon allocation processes,
nutrient availability in soils, nutrient uptake by trees, and compet-
itive interactions (Seidl et al., 2011b). A better knowledge of the
external impacts and disturbances – often human-induced – as
well as their dependence on site location is also required
(Landsberg, 2003; Kearney and Porter, 2009; Seidl et al., 2011a).
The feedbacks and compensating mechanisms between ecological
drivers create challenges in model development (Ceulemans
et al., 1999; Matala et al., 2005; Penuelas et al., 2008).

In contrast, empirically-based models (EBMs) are built on sta-
tistical relationships between forest growth and environmental
variables obtained from field measurements (Fabrika, 2007;
Hlásny et al., 2014; Pan et al., 2014). The choice of the forest model
best suited for a particular research or management question is of
crucial importance. Efforts have been made to combine the advan-
tages of PBMs (theoretical understanding, flexibility, predictive
power under changing conditions) and EBMs (robustness, limited
input demand, ease of interpretation) by using multi-model infer-
ence (Hlásny et al., 2014) or by developing hybrid models (Makela
et al., 2000; Baldwin et al., 2001; Peng et al., 2002; Girardin et al.,
2008; Taylor et al., 2009).

When climate predictions provide an input for forest models,
uncertainty is transferred from the climate model to the forest
growth simulation (Lindner et al., 2014; Keenan, 2015). The uncer-
tainties in regional climate predictions are caused by three
sources: (i) the climate model uncertainty, which is resulting from
the model structure and the parameterization and causes different
responses to the same radiative forcing, (ii) the scenario uncer-
tainty, which arises from the uncertainty in future environmental
changes, as e.g. greenhouse gas emissions, and (iii) the internal
variability, which is the inherent temporal randomness of climate
in the absence of any radiative forcing (Hawkins and Sutton,
2009, 2010). The relative importance of these three sources of
uncertainty changes with the spatial and temporal scale. The inter-
nal variability becomes more important with decreasing spatial
scale and with an increased occurrence of extreme events
(Lindner et al., 2014). Model uncertainty increases with longer pre-
diction periods. Scenario uncertainty increases even more with
lead time (Hawkins and Sutton, 2009). Uncertainties from regional
climate models (RCMs) can be quantified by using an ensemble
approach, combining the results of multiple models to give the sta-
tistical probability of possible future climates (Lindner et al., 2014).
Beside the physiological aspects, the state of a forest – i.e., its
extent, species composition and canopy structure – and its biogeo-
graphical location also affect its response to disturbance and vice
versa (Allen et al., 2010; Seidl et al., 2011b; Jactel et al., 2012).
The effects of forest state and forest history should be correctly
understood and taken into account in forest simulation studies,

especially for European forests that are generally intensively man-
aged (Spiecker, 2003; Boisvenue and Running, 2006; De Vries et al.,
2006; Solberg et al., 2009). It is important to correctly estimate the
costs and the benefits of different forest management measures
and to account for a wide range of forest situations and potential
future climate conditions.

In this contribution we (i) quantified the variance coming from
different sources of uncertainty on predictions of tree growth; (ii)
tested the significance of these sources of uncertainty; and (iii)
assessed the contribution of different RCMs to the total uncertainty
in the climate predictions. So, this study only investigated the
uncertainty of the model results and it did not consider the effects
of the different sources of variance on the actual predictions.

In this study we have modelled the annual stem biomass incre-
ment (ASBI) of European beech (Fagus sylvatica L.), a dominant tree
species in European forests and the most common deciduous spe-
cies in central Europe (Dittmar et al., 2003). Drought-induced
growth reduction and/or a decline of the species have been
reported in southern Europe (Ciais et al., 2005; Jump et al., 2006;
Piovesan et al., 2008; Bontemps et al., 2010; Charru et al., 2010;
Kint et al., 2012; Zang et al., 2014), but for central Europe an accel-
erated growth has been reported (Pretzsch et al., 2014).

2. Materials and methods

2.1. Site description and sampling design

The forest site was located in the Kremnické Vrchy Mountains
of theWestern Carpathians, Slovakia (48� 380 N, 19� 040 E). The alti-
tude ranged from 470 m to 510 m, with a total area of 4.5 ha hav-
ing a slope with a western aspect and an inclination of 13–20%. The
soil substrate consisted of andesite-tuff agglomerates and the soil
type was Andic Cambisol with a high skeleton content (10–60%).
During the measurement period (i.e., the calibration period) of
1989–2003 the annual average temperature was 8.6 �C and the
average annual precipitation was 677 mm.

At the start of the 1989–2003 calibration period, the forest was
100 years old. Before 1989, it was managed according to usual for-
estry practice of less intensive thinning interventions from below
(mostly the removal of damaged and low-quality trees). In the
30 years preceding the calibration period, the stand was thinned
three times. In the period 1963–1972, 54 m3 ha�1 were harvested
from the stand. In the following two periods (1973–1982 and
1983–1988) the harvested thinning was 54 and 40 m3 ha�1,
respectively. European beech (F. sylvatica L.) was the dominant
species (65–90%) in the forest stand, but hornbeam (Carpinus betu-
lus L.), oak (Quercus robur L.) and fir (Abies albaMill.) were also pre-
sent. In February 1989 three plots of 0.35 ha each were established.
These plots were subjected to strip shelterwood cutting of different
intensities. The remaining number of trees per ha was respectively
160 for the heavily thinned plot (H), 243 for the medium thinned
plot (M) and 397 for the lightly thinned plot (L). A fourth plot of
0.15 ha was left uncut as a control (C) with 700 trees per hectare.
The thinning primarily focused on removing the interbreed spe-
cies, dying and damaged trees, and trees of very low stem quality.
Branches were left on the site to decompose naturally. More
detailed information about the forest site and the forest manage-
ment has been reported previously (Jamnická et al., 2007;
Kellerová, 2009; Barna et al., 2010; Janík et al., 2011; Barna and
Bosela, 2015).

During the calibration period (1989–2003) stem diameter at
breast height (DBH) was measured annually using a diameter tape
with a precision of 1 mm. Individual trees and measurement posi-
tions were clearly marked to minimize measurement errors. Tree
height (h) was measured three times over the calibration period
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