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Abstract

This investigation deals with the thermal criticality of a reactive third-grade liquid flowing steadily between two parallel
isothermal plates. It is assumed that the reaction is exothermic under Arrhenius kinetics, neglecting the consumption of the
material. Approximate solutions are constructed for the governing nonlinear boundary value problem using regular perturbation
techniques together with a special type of Hermite-Padé approximants and important properties of the velocity and temperature
fields including bifurcations and thermal criticality conditions are discussed.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

It is well known that the rheological properties of many fluids in engineering and industrial applications are not well
modeled by Navier–Stokes equations due to their non-Newtonian behaviour [1,2]. In the past few decades there has
been significant work on flows of non-Newtonian fluids, not only because of their non-linearity which occur in the
inertial part, but also in the surface forces of the governing equations. The study of thermal criticality and heat transfer
plays an important role during the handling and processing of non-Newtonian fluids [4,9]. Rajagopal [11] studied in
detail the general thermodynamics, stability and uniqueness of fluids of the differential type with the fluid of third grade
being a special case. For problems involving heat transfer for fluid of third grade, a complete thermodynamics analysis
of the constitutive function has been performed by Fosdick and Rajagopal [4]. Similar studies with respect to non-
Newtonian fluid are also reported in [10,14].

Mathematically speaking, the thermal boundary layer equation for non-Newtonian fluids constitute a nonlinear
problem and the long-term behavior of the solutions in space will provide us an insight into inherently complex
physical process of thermal criticality in the system. Hence, the purpose of the present work is to investigate the thermal
criticality for a reactive third grade liquid flowing steadily between two parallel isothermal plates using a special type of
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Hermite-Padé approximants ([6–9,12,13]). The mathematical formulation of the problem is established and solved in
sections two and three. In section four we introduce and apply some rudiments of Hermite-Padé approximation
technique. Both numerical and graphical results are presented and discussed quantitatively with respect to various
parameters embedded in the system in section five.

2. Mathematical model

Consider the steady flow of an incompressible third grade reactive fluid placed between two parallel
isothermal plates (see Fig. 1). It is assumed that the fluid motion is induced by applied axial pressure gradient. We
choose x-axis parallel to the plate and y-axis normal to it. For hydrodynamically and thermally developed flow,
both velocity and temperature fields depend on y only. Following ([4,11,14]) and neglecting the reacting viscous
fluid consumption, the one dimensional governing equations for the momentum and heat balance can be written
as;
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where the additional Arrhenius kinetics term in energy balance equation is due to [5,9]. Here T is the absolute
temperature, U the fluid characteristic velocity, T0 the plate temperature, k the thermal conductivity of the material,
Q the heat of reaction, A the rate constant, E the activation energy, R the universal gas constant, C0 the initial
concentration of the reactant species, a the channel half width, β 3 the material coefficient, P the modified pressure
and μ is the fluid dynamic viscosity coefficient [1,4,10]. We introduce the following dimensionless variables into
Eqs. (1)–(3);
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Fig. 1. Geometry of the problem.
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