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The effect of magnetic field dependent (MFD) viscosity on the onset of ferroconvection in a ferrofluid
saturated horizontal porous layer is investigated theoretically. The bounding surfaces of the porous medium
are considered to be either rigid-ferromagnetic or stress free with constant heat flux conditions. The
resulting eigenvalue problem is solved numerically using the Galerkin technique and also analytically by
regular perturbation technique. It is found that increase in porous parameter, MFD viscosity parameter and
decrease in the magnetic number is to delay the onset of ferroconvection, while the nonlinearity of fluid
magnetization has no influence on the stability of the system.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In the 1960s, scientists from the National Aeronautics and Space
Administration (NASA) research centre were investigating methods
for controlling liquids in space. They developed what are now called
ferrofluids, which are colloidal suspensions of magnetic nanoparticles
in a carrier fluid such as water, hydrocarbon (mineral oil or kerosene)
or fluorocarbon. The nanoparticles typically have sizes of about 100 Å
or 10 nm and they are coated with surfactants in order to prevent the
coagulation. Ferrofluids respond to an external magnetic field and this
enables to control the location of the fluid through the application of a
magnetic field. Ferrofluids possess a wide variety of potential
applications in many fields ranging from mechanical engineering to
biomedical applications. An authoritative introduction to this fasci-
nating subject is provided in [1–3]. Thus, ferrofluids have received
much attention in the scientific community.

The magnetization of ferrofluids depends on the magnetic field,
temperature, and density. Hence, any variations of these quantities
induce change of body force distribution in the fluid and eventually
give rise to convection in ferrofluids in the presence of a gradient of
magnetic field. There have been numerous studies on thermal
convection in a ferrofluid layer called ferroconvection analogous to
Rayleigh–Benard convection in ordinary viscous fluids. The theory
of thermal convective instability in a ferrofluid layer began with
Finlayson [4] and extensively continued over the years ([5–9]).
Recently, Nanjundappa and Shivakumara [10] have investigated a

variety of velocity and temperature boundary conditions on the onset
of ferroconvection in an initially quiescent ferrofluid layer in the
presence of a uniform magnetic field.

Thermal convection of ferrofluids saturating a porous medium has
also attracted considerable attention in the literature owing to its
importance in controlled emplacement of liquids or treatment of
chemicals, and emplacement of geophysically imageable liquids into
particular zones for subsequent imaging etc. Rosensweig et al. [11]
have studied experimentally the penetration of ferrofluids in the
Hele–Shaw cell. The stability of the magnetic fluid penetration
through a porous medium in high uniform magnetic field oblique to
the interface is studied by Zahn and Rosensweig [12]. The thermal
convection of a ferrofluid saturating a porous medium in the presence
of a vertical magnetic field is studied by Vaidyanathan et al. [13]. The
laboratory-scale experimental results of the behavior of ferrofluids in
porous media consisting of sands and sediments are presented by
Borglin et al. [14]. Recently, Shivakumara et al. [15] have investigated
the criterion for the onset of convection in a horizontal ferrofluid
saturated porous layer for various types of velocity and temperature
boundary conditions.

Thermal convection in ferromagnetic fluids is gaining much
importance due to their astounding physical properties. One such
property is the viscosity of the ferromagnetic fluid. Fluids with
ferromagnetic properties may be formed by colloidal suspension of
solid magnetic particles such as magnetite in a parent liquid. Viscosity
of the fluid in a magnetic field is predicted by dimensional analysis to
be a function of the ratio of hydrodynamic stress to magnetic stress
(Rosensweig et al. [16]). The effect of homogeneous magnetic field on
the viscosity of a ferrofluid with solid particles possessing intrinsic
magnetic moments was investigated by Shliomis [17]. The effect of
magnetic field dependent (MFD) viscosity on ferroconvection in an
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anisotropic porous medium has been studied by Ramanathan and
Suresh [18]. Kaloni and Lou [19] have investigated theoretically the
convective instability problem in a thin horizontal layer of magnetic
fluidheated frombelowunder alternatingmagneticfield by considering
the quasi stationary model with internal rotation and vortex viscosity.
Recently, Sunil et al. [20] have studied theoretically the effect of
magnetic field dependent viscosity on the thermal convection in a
ferromagnetic fluid layer with or without dust particles.

The present study deals with the onset of ferroconvection in a
horizontal saturated porous layer by employing a non-Darcian model
for different combinations of velocity boundary conditions with
constant heat flux subject to MFD viscosity. The resulting eigenvalue
problem is solved numerically using the Galerkin technique and
analytically by the regular perturbation technique for rigid–rigid,
free–free, and lower boundary rigid and upper boundary free bound-
ary combinations.

To achieve the above objectives, the paper is organized as follows.
Section 2 is devoted to mathematical formulation. The method of
solution is discussed in Section 3. In Section 4, the numerical results
are discussed and some important conclusions follow in Section 5.

2. Mathematical formulation

The system considered is initially quiescent ferrofluid saturated
horizontal porous layer of characteristic thickness d in the presence of
an applied magnetic field H0 in the vertical direction. The lower and the
upper boundaries of the porous layer are maintained at constant
temperature T0 and T1(bT0) respectively, and thus constant temperature
difference ΔT(=T1−T0) is maintained between boundaries. A Cartesian
co-ordinate system (x, y, z) is used with the origin at the bottom of the
porous layer and z-axis is directed vertically upward. The gravitational
force (0,0,−g)acts in the negative z-direction. The flow in the porous
medium is described by the Brinkman–Lapwood extended
Darcy momentum equation containing viscous force 2∇⋅ðη

PP
DÞ, where

PP
D = ½∇→q + ð∇→q ÞT �= 2 is the rate of strain tensor and →q = u; v;wð Þ is
the velocity vector. The fluid is assumed to be incompressible
having variable viscosity, given by η = η0ð1 + →δ ⋅→B Þ, where →δ is
the variation coefficient of magnetic field dependent viscosity, η0
is taken as viscosity of the fluid when the applied magnetic field is
absent and →B = Bx;By;Bz

� �
is the magnetic induction. Experimentally,

it has been demonstrated that the magnetic viscosity has got exponen-
tial variation with respect to magnetic field (Rosenswieg [21]). As a first
approximation for small field variation, linear variation of magnetic
viscosity has been used.

It is clear that there exists the following solution for the basic state:

→qb = 0; pb zð Þ = p0−ρ0g z−ρ0αtgβ z2 = 2−μ 0M0K β z = 1 + χð Þ

−μ 0K
2β2z2 = 2 1 + χð Þ2; Tb zð Þ = T0−βz ;

→
Hb zð Þ

= H0−Kβ z = 1 + χð Þ½ � k̂; →
Mb zð Þ = M0 + Kβz = 1 + χð Þ½ �k̂:

ð1Þ

Here,
→
M is the magnetization,

→
H the magnetic intensity of the fluid,

p the pressure, ρ
0
the density at T=T0, μ0

the magnetic permeability of
vacuum, αt the thermal expansion coefficient, k̂ the unit vector in the
z-direction, β temperature gradient, χ=(∂M /∂H)H0

, T0 the magnetic
susceptibility, K=−(∂M /∂T)H0

, T0 the pyromagnetic coefficient and
M0=M(H0,T0).

To investigate the conditions under which the quiescent solution is
stable against small disturbances, we consider a perturbed state such
that

→q = →q ′; p = pb zð Þ + p0; η = ηb zð Þ + η0; T = Tb zð Þ

+ T ′;
→
H =

→
Hb zð Þ + →

H 0
;

→
M =

→
Mb zð Þ + →

M ′

ð2Þ

where →q ′, pV, ηV, TV,
→
H 0

, and
→
M0

, are perturbed variables and are
assumed to be small.

Following the standard linear stability analysis procedure [4] and
noting that the principle of exchange of stability is valid, the resulting
dimensionless equations are then found to be

1 + δð Þ D2−a2
� �

−σ2
h i

D2−a2
� �

W = −a2 R M1DΦ− 1 + M1ð ÞΘ½ � ð3Þ

D2−a2
� �

Θ = − 1−M2Að ÞW ð4Þ

D2−a2M3

� �
Φ−DΘ = 0: ð5Þ

Here D=d /dz is the differential operator, a =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℓ2 + m2

p
the

overall horizontal wave number, W the amplitude of vertical
component of velocity, Θ the amplitude of temperature, Φ the
amplitude of magnetic potential, R=αtgβd4/νκA the thermal Raleigh
number,M1=μ0K

2β/(1+χ)αtρ0g the magnetic number,M2=μ0T0K
2/

(1+χ)(ρ0C)1 the magnetic parameter, M3=(1+Mo /Ho)/(1+χ)
the measure of nonlinearity of magnetization, σ = d =

ffiffiffi
k

p
the porous

parameter and A=(ρ0C)1/(ρ0C)2 the ratio of heat capacities. The
typical value of M2 for magnetic fluids with different carrier liquids
turns out to be of the order of 10−6 and hence its effect is neglected as
compared to unity.

The boundaries are considered to be either rigid-ferromagnetic or
stress free with constant heat flux conditions at the boundaries. Thus,
on the rigid-ferromagnetic boundary, W=DW=Φ=DΘ=0 and on
the stress free boundary, W=D2W=DΦ=DΘ=0.

3. Method of solution

Eqs. (3)–(4) together with the corresponding boundary conditions
constitute an eigenvalue problem with R as an eigenvalue. The
eigenvalue problem is solved numerically using the Galerkin technique
as well as analytically using a regular perturbation technique and
the results so obtained are compared to know the accuracy of the
methods employed.

3.1. Solution by Galerkin technique

The Galerkin method is used to solve the eigenvalue problem as
explained in the book by Finlayson [22]. In this method, the test
(weighted) functions are the same as the base (trial) functions.
Accordingly, W, Θ and Φ are written as

W = ∑
n

i=1
Ai Wi zð Þ; Θ zð Þ = ∑

n

i=1
Ci Θi zð Þ; Φ zð Þ = ∑

n

i=1
Di Φi zð Þ ð6Þ

where Ai, Ci and Di are unknown constants to be determined. The base
functions Wi(z), Θi(z) and Φi(z) are generally chosen such that they
satisfy the corresponding boundary conditions but not the differential
equations. For rigid–rigid, rigid–free and free–free boundaries, they
are chosen respectively as

Wi = z4−2z3 + z2
� �

T�
i−1; Θi = z2 1−2z = 3ð ÞT�

i−1; Φi = z2−z
� �

z−2ð ÞT�
i−1

ð7Þ

Wi = 2z4 � 5z3 + 3z2
� �

T�
i−1; Θi = z2 1� 2z = 3ð ÞT�

i−1; Φi = z2 1−2z = 3ð ÞT�
i−1

ð8Þ

Wi = z4−2z3 + z
� �

T�
i−1; Θi = z2 1� 2z= 3ð ÞT�

i−1; Φi = z2 1� 2z= 3ð ÞT�
i−1

ð9Þ

where, Ti
* 's are the modified Chebyshev polynomials. The above

trial functions satisfy all the boundary conditions. Multiplying Eq. (3)
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