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a b s t r a c t

Quantification of soil organic carbon (SOC) stocks is quite useful for accurate monitoring of C sequestra-
tion. However, there are still substantial gaps in our knowledge of SOC stocks in many parts of the world,
including the Himalayas. We investigated the total SOC stocks and its spatial distribution under different
land use and land cover (LULC) types in montane ecosystems of Bhutan. 186 Soil profiles were described
and sampled by genetic horizons at sites located using conditioned Latin hypercube sampling. SOC con-
centrations at the standard depths designated for the GlobalSoilMap.Net were estimated with an equal-
area spline profile function. SOC concentrations at these depth intervals were digitally mapped to a fine
resolution matrix of 90 m grid using regression kriging. We found significant influence of LULC categories
on SOC concentration, SOC density, SOC stocks and their spatial distributions, although this influence
decreased with increasing soil depth. The estimated mean SOC density in the top 1 m were highest in
fir forest soils (41.4 kg m�2) and lowest in paddy land (12.0 kg m�2). Allowing for LULC relative areas,
mixed conifer forest had the highest SOC stocks in the upper meter (12.4 Mt) with orchards the lowest
(0.1 Mt). The total SOC stocks for the whole study area for the 0–5, 5–15, 15–30, 30–60 and
60–100 cm depths were 2.6, 5.0, 6.5, 7.5 and 5.4 Mt, respectively. The overall SOC stock of the study area
for the upper meter was approximately 27.1 Mt. The combined forests accounted for more than 77.5% of
the total SOC stocks of the study area. This and the relative SOC densities indicate that the conversion of
even a fraction of forests to other LULC types could lead to substantial loss of SOC stocks. This loss of SOC
stock is even greater when the decrease in aboveground biomass is also taken into consideration.
However, appropriate management of the agricultural lands could increase their sequestration of
atmospheric CO2.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Soil organic carbon (SOC) is the largest terrestrial pool of
sequestered carbon (C) (Batjes, 1996; Chhabra et al., 2003) and
therefore plays a pivotal role in global C dynamics. Previous esti-
mates, based on vegetation units (Post et al., 1982) and soil taxo-
nomic units (Batjes, 1996), indicate that the soil stores about
1500–1600 PgC in the upper meter. Jobbágy and Jackson (2000)
estimated about 2344 PgC for the upper 3 m (with 1502, 491 and
351 PgC for the first, second and third meters, respectively). SOC
is not just an inert C store, as it also influences the physical, chem-
ical and biological properties of the soil (Dexter et al., 2008), which

have significant impact on sustainability of agriculture. SOC is
therefore an indicator of both soil quality and environment stabil-
ity (Saha et al., 2011). As sequestration of atmospheric CO2 in soils
is an option to reduce global warming (IPCC, 2007), baseline data
and information on SOC storage are essential for characterizing C
dynamics and C trading (Stockmann et al., 2013). Consequently,
modeling and quantification of the spatial distribution of SOC
stocks is necessary to find the SOC sink capacity of soils (Mishra
et al., 2009) for enhancing C sequestration.

The quantification of SOC stocks relies on understanding the
spatial variability of SOC stocks in a landscape, which in turn re-
quires identification of its controlling factors including, land use
and land cover (LULC) types (Sitaula et al., 2004; Smith, 2008; Saha
et al., 2011). LULC types affect SOC storage by determining the
amount and quality of soil organic matter inputs, and by influenc-
ing their decomposition and stabilization (Six et al., 1999, 2002).
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Many studies have reported large SOC stocks under forest com-
pared to grassland and agricultural land (Guggenberger et al.,
1994; Cai, 1996; Lal, 2004b; Abbasi et al., 2007; Yang et al.,
2009; Saha et al., 2011). However, in most previous studies only
generalized LULC types were considered (Shrestha et al., 2004;
John et al., 2005; Tan et al., 2007), which precluded the deciphering
of more detailed and complex interactions between the SOC stocks
and LULC types.

While the spatial variability of SOC concentration, bulk density
and depth should be considered when computing the SOC stocks
for a given area, many previous estimates of SOC stocks at global
(Eswaran et al., 1993), national (Chhabra et al., 2003; Guo et al.,
2006), regional (Yu et al., 2007) and watershed (Shrestha et al.,
2004) scales, were computed by multiplying the mean C concen-
tration, bulk density and area. These estimates did not account
for the spatial variability of SOC concentration within the soil
(Mishra et al., 2009) and may thus be of low reliability (Meersmans
et al., 2008). The recent developments in geostatistics, artificial
neural network and multiple regression have been used to account
for the spatial variability of SOC and can improve digital soil map-
ping (DSM) considerably (Mishra et al., 2009). DSM at plot (Simba-
han et al., 2006), watershed (Minasny et al., 2006) and regional
(Meersmans et al., 2008) scales, has shown its potential for SOC
mapping (Minasny et al., 2013). However, there is hardly any
DSM of SOC done at different depths and under different LULC
types, especially in the Himalayan region. Although moderate in
extent, the Himalayan region is a globally important C sink and
therefore the gaps in our data and knowledge of its SOC need to
be filled (Shrestha et al., 2004; Sitaula et al., 2004; Singh et al.,
2011). This study aimed to characterize SOC in montane ecosys-
tems of Bhutan in the Eastern Himalayas, and particularly to: (i)
estimate SOC density and SOC stocks under different LULC types
(ii) model the spatial distribution of SOC density and SOC stocks
(iii) and establish a baseline data on SOC stocks for future studies
of SOC dynamics.

2. Materials and method

2.1. Study area

The study area (1014 km2) covers much of the Paro valley, a
sub-catchment in the Wang Chhu watershed in western Bhutan
(Fig. 1). The rugged mountainous landscape is characterized by
deep valleys, gorges and high peaks. Altitudes range from 1769
to 5520 m above sea level (asl), within a distance of 65 km. The
climate is monsoonal and varies with altitude from warm temper-
ate in the valleys to alpine on the upper slopes and ridges. Mean
monthly temperatures in the valleys range from about 10 �C in
January to 24 �C in July. Annual average precipitation varies with
altitude and landscape position and ranges from 600 mm in the
southern part to 2900 mm in the north (Source: Hydromet Services
Division, Ministry of Economic Affairs, Thimphu, Bhutan). The
complex variability of precipitation in the study area and in the
Himalayas in general, is demonstrated by the short range variation
in such a given single valleys, with wetter zones at mid-altitude
(3000–4000 m asl) interposed between drier valley floors and
upper slopes.

The area is underlain by the metasedimentary unit of the Great-
er Himalaya in the north and the Paro Formation of the Lesser
Himalaya in the south (Long et al., 2011). The metasedimentary
unit consists of paragneisses, muscovite-biotite-garnet schist, and
quartzite while the Paro Formation is largely dominated by quartz-
ite, quartzite-garnet-schist, marble, and minor calc-silicate rocks
(Tobgay et al., 2010). These rocks were formed as a result of intense
tectonic activity. The mountains are young and still rising, leading

to landscape dissection and natural soil erosion (Singh et al., 2010);
the latter process is continually affecting soil development. There
are four main altitudinally determined soil zones: (i) moderately
weathered and leached thin dark topsoil over bright subsoil up
to about 3000 m asl; (ii) very bright orange-colored non-volcanic
andosolic soils and (iii) acidic soils with thick surface litter that
grade to weak podzols up to about 4000 m asl; and (iv) alpine turf
with deep dark and friable topsoil over yellowish subsoil mixed
with raw glacial deposits above 4000 m asl (Baillie et al., 2004).
The valleys are characterized by narrow alluvial floors, fans and
terraces, with the lower slopes and alluvia often mantled with col-
luvia from upslope and aeolian deposits (Baillie et al., 2004;
Caspari et al., 2006; Dorji et al., 2009).

More than 65% of the Bhutan’s population depends on agricul-
ture, livestock and forestry for their livelihood. However, agricul-
tural land accounts for only about 3% of the total land area due
to the rugged terrain and extreme climatic conditions. About 72%
of the country is under forest cover (LCMP, 2010). The study area
is more intensively used, but still has about 73% under forest and
only 7% in agricultural production. The dominant LULC types are
mixed coniferous forest (MCF, 36.4% of the study area), blue pine
forest (BPF, 23.7%), broadleaf (BF, 8.1%), fir forest (FF, 5.0%), shrubs
(SH, 13.7%), grassland (GL, 2.8%), dry land (DL, 4.2%), paddy land
(PL, 1.8%) and orchards (HO, 1.0%). Small and inaccessible patches
of open water, snow and bare rock cover about 3.5% (36 km2) of the
study area and are not included in this study.

2.2. Acquisition and derivation of environmental covariates

To obtain the digital terrain attributes required as covariates for
DSM, a 90 m resolution digital elevation model (DEM) covering the
study area was extracted from the Shuttle Radar Topography Mis-
sion (SRTM) elevation data portal (http://earthexplorer.usgs.gov/-
available on August 30, 2013). Slope gradient, aspect, curvatures
(profile and plan), SAGA wetness index (SWI), terrain ruggedness
index (TRI) and multi-resolution index for valley bottom flatness
(MrVBF) were derived from the DEM using the System for
Automated Geoscientific Analysis (SAGA) software (http://www.
saga-gis.org/en/index.html). Based on Moore et al. (1993), who
characterized terrain-determined spatial variations in soil
moisture content by a terrain index, the SWI was computed as a
tangent function of slope angle b and modified specific catchment
area (SCAM) (Böhner and Selige, 2006) (Eq. (1)). The SCAM is a
function of slope angle b and the neighboring maximum values
SCAmax (Eq. (2)).

SWI ¼ lnðSCAM= tan bÞ ð1Þ

SCAM ¼ SCAmaxð1=15Þbexpð15bÞ for SCA< SCAmaxð1=15Þbexpð15bÞ ð2Þ

where SCA is the specific catchment area defined as the correspond-
ing drainage area per unit contour width (m2 m�1) (Böhner and
Selige, 2006). The TRI indicates elevation difference between adja-
cent cells of a digital elevation grid. The process basically calculates
the difference in elevation values from a center cell and the eight
cells immediately surrounding it. It squares each of the eight eleva-
tion difference values to make them all positive and averages the
squares. The TRI is then derived by taking the square root of this
average, and corresponds to average elevation change between
any point on a grid and its surrounding area (Riley et al., 1999).

TRI ¼ Y
X
ðxij � x00Þ2

h i1=2
ð3Þ

where xij = elevation of each neighbor cell to cell (0,0). MrVBF quan-
tifies the depositional area in a landscape. It is a function of slope
and elevation to classify valley bottoms as flat, and low areas
through a series of neighborhood operations at progressive coarser
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