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The main objective of this article is to study numerically a two-dimensional, steady and laminar viscous
incompressible flow in a sinusoidal corrugated inclined enclosure. In this analysis, two vertical sinusoidal
corrugated walls are maintained at a constant low temperature whereas a constant heat flux source whose
length is varied from 20 to 80% of the total length of the enclosure is discretely embedded at the bottomwall.
The Penalty finite element method has been used to solve the governing Navier–Stokes and energy
conservation equation of the fluid medium in the enclosure in order to investigate the effects of inclination
angles and discrete heat source sizes on heat transfer for different values of Grashof number. Results are
presented in the form of streamline and isotherm plots. It is concluded that the average Nusselt number
increases as inclination angle increases for different heat source sizes.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Natural convection results when there is a fluid density gradient in
a system with a density-based body force such as the gravitational
force. It has been studied extensively, both experimentally and
numerically, because of its various applications in engineering, such
as thermal control in electronic equipments, nuclear reactors, solar
collectors, and chemical vapor deposition reactors etc. Heat transfer
by natural convection depends on the convection currents developed
by thermal expansion of the fluid particles. Further, the shape of the
heat transfer surfaces influences the development of the boundary
layer. Therefore, the investigation of thermal and fluid flow behaviors
for different shapes of the heat transfer surfaces is necessary to ensure
the efficient performance of the various heat transfer equipments.

Several investigations have been carried out on natural convection
heat transfer and fluid flow with corrugated surfaces. Chinnappa [1]
carried out an experimental investigation on natural convection heat
transfer from a horizontal lower hot vee corrugated plate to an upper
cold flat plate. He took data for a range of Grashof numbers from 104 to
106. Randall [2] studied natural convection between a vee corrugated
plate and a parallel flat plate to find the temperature gradient to
estimate the local heat transfer coefficient. Local values of heat

transfer coefficient were investigated over the entire vee corrugated
surface area. Using control volume based finite element method, Ali
and Husain [3] investigated the natural convection heat transfer and
flow characteristics in a square duct of vee corrugated vertical walls.
Ali and Husain [4] also investigated the effect of corrugation
frequencies on natural convection heat transfer and flow character-
istics in a square enclosure of vee corrugated vertical walls. This
investigation showed that the overall heat transfer through the
enclosure increased with the increase of corrugation for low Grashof
number; but there was a reverse trend for high Grashof number. Later
Ali and Ali [5] carried out a finite element analysis of laminar
convection heat transfer and flow of the fluid bounded by vee cor-
rugated vertical plate of different corrugation frequencies. Noorshahi
et al. [6] studied heat transfer mechanism in an enclosure with
corrugated bottom surface having uniform heat flux and flat
isothermal cooled top surface and adiabatic sidewalls. Their results
showed that the pseudo-conduction region was increased with the
increase of the wave amplitude. Yao [7] studied theoretically the
natural convection along a vertical wavy surface. He found that the
local heat transfer rate was smaller than that of the flat plate case and
decreased with the increase of the wave amplitude. The average
Nusselt number also showed the same trend. Adjlout et al. [8]
reported a numerical study of the effect of a hot wavy wall in an
inclined differentially heated square cavity. Tests were performed for
different inclination angles, amplitudes and Rayleigh numbers for one
and three undulation. The trend of the local heat transfer was found to
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be wavy in nature. Due to the practical importance of flow and heat
transfer in corrugated geometrymany researchers have been reported
results on this geometry theoretically as well as experimentally
(Asako and Faghri [9]; Fabbri [10]; Goldstein and Sparrow [11]; O'Brien
and Sparrow [12]; Sunden and Trollheden [13]; Xiao et al. [14]). It may
also be noted that the sinusoidal wall temperature variation may
produce uniform melting of materials such as glass (Sarris et al. [15]).

In this investigation, a natural convection problem has been solved
for sinusoidal corrugation geometry and air has been taken as the
working fluid. The corrugation geometry and the coordinate systems
are shown in Fig. 1. It consists of a sinusoidal corrugated enclosure of
dimensions, W × H. In this work, two side walls are maintained at a
constant temperature Tc, a constant flux heat source, q is discretely
embedded at the bottom wall, and the remaining parts of the bottom
surface and the upper wall are considered to be adiabatic. The
enclosure has the same height and width, H = W with single
corrugation frequency and the corrugation amplitude has been fixed
at 10% of the enclosure length. The ratio of the heating element to the
enclosure width, ε = L/W is varied from 0.2 to 0.8 and inclination angle
of the enclosure, Φ is varied from 0° to 45°. The Grashof number, Gr is
varied from 103 to 106 and Prandtl number, Pr is taken as 0.71.

2. Mathematical model

Natural convection is governed by the differential equations
expressing conservation of mass, momentum and energy. In the
present study, we consider a steady two-dimensional laminar flow of
a viscous incompressible fluid. The viscous dissipation term in the
energy equation is neglected. The Boussinesq approximation is
invoked for the fluid properties to relate density changes to
temperature change and to couple in this way the temperature field
to the flow field. Then the governing equations for steady natural
convection can be expressed in the dimensionless form as follows:
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where U and V are the velocity components in the X and Y directions,
respectively, θ is the temperature, P is the pressure,Ф is the inclination
angle of the enclosure and Gr and Pr are the Grashof number and the
Prandtl number, respectively, and they are defined as:

Gr ¼ gβΔTW3

υ2 and Pr ¼ υ
α
: ð5Þ

The dimensionless parameters in the equations above are defined
as follows:

X ¼ x
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where ρ, β, υ, α and g are the fluid density, coefficient of volumetric
expansion, kinematic viscosity, thermal diffusivity, and gravitational
acceleration, respectively. The corresponding boundary conditions for

Nomenclature

g gravitational acceleration [m/s2]
Gr Grashof number, gβΔTW3/υ2

H height of the enclosure [m]
J Jacobian matrix
L length of the heat source [m]
Ni standard six-noded shape function
Nu Nusselt number, Eq. (8)
p pressure [Pa]
P dimensionless pressure, pW2/ρυ2

Pr Prandtl number, υ/α
q heat flux [W/m2]
Ra Rayleigh number, Gr × Pr
Ri residual equations
T temperature [K]
Tc temperature of the cold surface [K]
u velocity component in x-direction [m/s]
U dimensionless velocity component in X-direction, uW/υ
v velocity component in y-direction [m/s]
V dimensionless velocity component in Y-direction, vW/υ
W width of the enclosure [m]
x, y Cartesian coordinates [m]
X, Y dimensionless Cartesian coordinates, (x,y)/W

Greek symbols
Ф inclination angle [rad]
γ Penalty parameter
k thermal conductivity of fluid [W/m2 k]
α thermal diffusivity [m2/s]
β coefficient of volumetric expansion [1/K]
ε discrete heat source size ratio, L/W
θ dimensionless temperature, T − Tc/(qW/K)
θS local dimensionless surface temperature
ν kinematic viscosity [m2/s]
ρ fluid density [kg/m3]
Г dummy variable

Subscripts
c cold wall

Fig. 1. Schematic diagram of the physical domain.
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