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a b s t r a c t

Improving predictions of the location of suitable environmental conditions for species using species dis-
tribution models (SDM) is at the core of biodiversity/climate change research, but modelling species
abundance, rather than distribution, is proving particularly challenging. Using data from more than
200,000 forest plots in eastern North America and Random Forest, we evaluated the performance of spe-
cies abundance models (SAM) in predicting the relative abundance (measured as importance value) of
each of 105 tree species in relation to climate, edaphic, and topographic variables. We calculated the coef-
ficient of determination R2

SAM

� �
between observed and predicted abundances as a measure of model per-

formance for each species. We also performed multiple linear regressions to explain variation of R2
SAM

among species using five biogeographical or spatial attributes of species as explanatory variables. Predic-

tive performances of SAM R2
SAM

� �
were generally low, ranging from 0.016 to 0.815 (mean = 0.258). Black

spruce (Picea mariana) had the best predictive model and Florida maple (Acer barbatum) and American

chestnut (Castanea dentata) the worst. Thirty-seven of the 41 best performing species R2
SAM P 0:3

� �
had climate ranked as the best and/or second best predictor. Species with the best performance tended
to be those that could reach dominance, showed aggregated distribution of abundance, and/or had high
latitudinal limits in the study area. Climate change is likely to affect patterns of dominance in communi-
ties by altering patterns of co-occurrences, but for many species that constitute the bulk of tree diversity,
predictions based solely on the current distribution of relative abundances may not be reliable enough to
inform conservation or management decisions. Predicting tree abundance in a warming climate using
SAM remains a challenge, but it is only by reporting performances across a range of climate and statistical
models, regions and species, as well as by highlighting model limitations and strengths, that we will
improve the reliability of predictions and in turn better inform forest conservation and management.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

The need to forecast potential changes in species distribution in
response to climate warming and other environmental changes has
stimulated the development of modelling approaches that use cur-
rent geographic distribution to estimate suitable environmental
conditions for a given species (Araújo et al., 2004; McKenney
et al., 2007, 2011; Thuiller, 2003). Based on occurrence data, spe-
cies distribution models (SDM) have generally reported moderate
to high accuracy (Area Under the ROC Curve P0.60) in reproducing
the current distribution of trees (McKenney et al., 2007), birds
(Brotons et al., 2004; Hu et al., 2010), or amphibians (Lawler
et al., 2010). This has increased confidence that SDM can be useful

for mapping biodiversity, assessing climate risk, or informing re-
source management (Millar et al., 2007). Improving confidence in
predictions however, requires an understanding of the sources of
uncertainty in SDM (Buisson et al., 2010). One of these sources is
the modelling approach used; this has led to the development of
consensus approaches where predictions are combined across a
range of statistical models (Araújo and New, 2007). When different
species are modelled using the same statistical approach, differ-
ences in accuracy among predictions for the same set of predictors
have been attributed to the spatial, geographical, and/or biological
attributes of the species themselves (Hanspach et al., 2011; Luoto
et al., 2005; Marmion et al., 2009; Syphard and Franklin, 2010).
The fact that SDM have been often criticised for not implicitly tak-
ing into account processes such as dispersal has not limited their
development as an active area of research in ecology, conservation,
and management.
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Improving predictions of the potential location of species is
important, but modelling species abundance, rather than occur-
rence, may prove particularly challenging (Anadón et al., 2010;
Iverson et al., 2008; Pearce and Ferrier, 2001). Yet knowing about
the relative abundance of a species in a community or landscape
is crucial as abundance patterns determine a species’ influence
on other species or ecosystem processes, its conservation status,
or its use as a resource. Information on the presence of a species
at a site may mask patterns of low abundance or, on the contrary,
patterns of very high abundance in populations of core importance
to the species. In spite of recognising the importance of monitoring
changes in abundance patterns for biodiversity research
(McMahon et al., 2011), there are still relatively few studies
addressing patterns of species abundances over broad geographical
extent in relation to climate and other environmental gradients,
and the available empirical observations show that the spatial
distribution of abundances is more complex than previously
acknowledged (Sagarin et al., 2006). Climatic suitability, as
determined by SDM, positively correlates with abundance for some
species (VanDerWal et al., 2009), suggesting that processes like
dispersal or physiological constraints on establishment that deter-
mine a species’ occurrence at a site also determine to some extent
its abundance. Species abundance models (hereafter called SAM),
however, have lagged behind SDM, partly because of the scarcity
of good abundance data across large spatial extent to allow testing
environmental drivers of species’ abundance for a range of species.

When SAM have been used with climate data, they have pro-
duced mixed results. SAM have been apparently successful in mod-
elling bird abundance in Africa in relation to climatic variables
(Huntley et al., 2011), but less so for trees in North America
(Canham and Thomas, 2010; Iverson et al., 2008); their perfor-
mance may vary with taxa or regions. For trees, failure to incorpo-
rate edaphic variables along with climatic variables or failure to
capture the northern limit of species (Canham and Thomas,
2010), or the lack of confidence in models built with only a portion
of the species’ range (Iverson et al., 2008), have all been invoked to
explain poor performance of abundance models. It remains unclear
whether predictive performance would be improved by extending
datasets to include latitudinal limits or more environmental pre-
dictors. More importantly, it is unclear whether or how tree abun-
dance patterns vary with climate at broad spatial scale (Canham
and Thomas, 2010; Stegen et al., 2011). For animal species, exam-
ination of the relationship between climatic suitability predicted
from presence/absence data and abundance showed that sites with
low suitability consistently had low abundance, whereas suitabil-
ity predicted the upper limit of abundance better than mean abun-
dance (VanDerWal et al., 2009). Community processes such as
competition can reduce species abundance at a site, but ecological
theory also predicts that environmental conditions will have an
impact on competitive outcomes and therefore on species abun-
dance. All this suggests that species that can reach dominance in
part of their range would be better modelled by SAM. There have
been generally few attempts at explaining modelling variations
in the predictive performance of SAM to identify the attributes of
species that perform best or, conversely, of those that perform
poorly.

To understand the relationship between tree abundance pat-
terns and environmental predictors in a context of environmental
changes, we tested how well we could predict the relative abun-
dance of 105 tree species using abundance data from more than
200,000 forest plots across eastern North America in relation to cli-
matic, edaphic, and topographic variables. We integrated ecologi-
cal information across eastern Canada and the USA, thereby
capturing the northern limit of tree species. We used the statistical
modelling approach, Random Forest, that consistently performed
best in exploratory analyses using a range of statistical models.

Finally, we went a step further by explaining variations in SAM
performances using biogeographical and spatial attributes of spe-
cies as explanatory variables to facilitate generalizations across
species and regions.

2. Materials and methods

2.1. Study area

This study is part of a larger research project known as CC-Bio
for ‘‘Effect of Climate Change on Quebec Biodiversity’’ (Berteaux
et al., 2010). The focus of CC-Bio is on the impacts of climate
change on the biodiversity of the province of Quebec, Canada.
The extent of the study area, however, was defined to take into ac-
count the expected shift north of climatic envelope (� +5 �C iso-
therm) as well as available data on species, climate, and edaphic
conditions. The study area ranges in latitude from 30�300N to
53�000N and in longitude from 93�000W to 60�300W covering an
area of more than 2,567,000 km2 (Fig. 1).

Because of its size, the study area is characterized by strong cli-
matic, geological, and topographical variability. It contains several cli-
matic zones ranging from temperate in most of its range, to arid in
the southwest of the Great Basin, to a maritime climate along the
Atlantic coast. Annual mean temperature increases gradually from
�5 �C in the north to 20 �C in the south, whereas annual total precip-
itation ranges from 670 to 2000 mm (USDA Forest Service, 2010).

Physiographic regions include the Canadian Shield (Laurentian
Upland, North), the Great Lake plains, the Appalachian Highlands
(North East), the Atlantic Plains (East), and the Interior Plains
(West). The elevation ranges from sea level to 1250 m
(mean = 300 m, SD = 165 m) (Canadian Council on Geomatics,
2003; USGS, 2010).

The study area was covered by a grid that contains 6418 cells of
400 km2 (20 km � 20 km) each. Each cell was considered as a sam-
pling unit and contained information on tree abundance, climatic
(temperature and precipitation), topographic (elevation) and
edaphic variables (drainage and surface deposit). The grid in Can-
ada was a convenient extension of the grid used by Prasad et al.
(2006) in eastern USA, making it possible to merge datasets from
different jurisdictions (see details below). Although climatic data
can be obtained at finer or coarser scales, the cell size that we used
was considered adequate to capture broad climatic variations over
such a large study area.

2.2. Data and analysis

There were two main steps in the analysis (Fig. 2):

– Step (1) model tree abundance, measured as importance value
in a cell (the response variable), for each species (n = 105) using
climatic, edaphic, and topographic data as explanatory vari-
ables. Calculate a measure of predictive performance R2

SAM

� �
for each modelled species.

– Step (2) explain the variation among species in the predictive
performance of SAM by conducting a Multiple Linear Regression
(MLR) using R2

SAM from step 1 as the response variable and five
biogeographical and spatial attributes describing each species
as explanatory variables.

2.2.1. Step 1: model tree abundance for each species
2.2.1.1. Data collection.
2.2.1.1.1. Tree importance value. The importance value (IV) was
used as a measure of the relative density and dominance of each
tree species (n = 105). In the American portion of the study area,
IV for a given species was obtained online from the USDA Forest
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