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The Convection–diffusion–reaction (CDR) equation shows multi-scale behaviour in cases where it represents
convection or reaction dominated transport processes. Bubble function enriched finite elements are used to
generate stable and accurate solutions for this equation. To validate the approach, the numerical results
obtained for a benchmark problem are compared with their corresponding analytical solution for both
exponential and propagation regimes.
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1. Introduction

The general mathematical model incorporating different types of
transport phenomena is expressed as the CDR equation. In general,
however, the solution of this equation cannot be assumed to be
globally smooth. In particular, if the field variables vary rapidly within
thin layers adjacent to domain boundaries, or internal layers, sharp
gradients are produced and standard numerical schemes lead to
inaccurate and unstable results. Almost all of such situations can be
regarded as multi-scale phenomena in which both fine and coarse
scale variations of field variables need to be taken into account in the
numerical solution of the CDR equation. Theoretically, any basically
sound scheme should generate accurate numerical results if suffi-
ciently refined computational grids are used. In practice, however,
such an approach will not be computationally cost effective.

These complications can be resolved using variational multi-scale
methods [1,2]. The multi-scale approach can be applied to situations
where traditional methods can only be used in conjunction with very
finediscretizations. Therefore this technique offers a generalmethod for
the modeling of transport problems with multi-scale behaviour.
Amongst such problems turbulent flow, convection–diffusion processes
andflow inporousmedia canbe considered. In all of these problems, the
simultaneous representation of all of the governing physical phenom-
ena requires very high levels ofmesh refinement or artificial smoothing,
otherwise the fine scale information is ignored resulting in the
generation of unstable and inaccurate [3] solutions. In the variational
multi-scale method, the field unknown (T) is divided into two parts as

T=T1+Tb, where Tb represents the fine scale variations of T andmay be
derived analytically whilst T1, the coarse scale variations of T, is
approximated using standard polynomialfinite element discretizations.
To generate practical multi-scale schemes the bubble enhanced trial
functions can be used in a finite element context. Bubble functions are,
typically, high order polynomials which vanish on the element
boundaries [4–7]. A systematic approach to derive bubble functions is
the residual free bubble (RFB) method [8–11]. In this method, the
governing differential equation is solvedwithin each element subject to
homogeneous boundary conditions.

The behaviour of the CDR equation has mainly been studied under
exponential regimes [12–17]. To study the CDR equation in both
exponential and propagation regimes Hauke [18] has developed a
sub-grid scale model based on a time-scale parameter, originally
defined and formulated by Hughes [1].

In this paper the bubble functions are used for multi-scale finite
element modeling of CDR equation in both exponential and
propagation regimes for a relatively wide range of Peclet and
Damköhler numbers. In multi-dimensional problems the analytical
solution of the CDR equation can represent major difficulties. To
overcome such problems a semi-discrete method is developed in
which the solution of the PDE is replaced by the analytical solution of
ordinary differential equations [19]. In this technique the exact
solutions obtained from the ODE is expanded using the Taylor series
and the multi-dimensional bubble functions are derived by tensor
products of one-dimensional functions. The resulting functions are
polynomial bubble functions which, for example, have been used to
model the flow in porous media by Parvazinia et al. [19].

The method of incorporating bubble functions with Lagrangian
shape functions using both semi-discrete and the static condensation
methods are explained in the solution of the CDR equation.
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2. Governing equations

The steady state convection–diffusion–reaction equation in do-
main Ω⊂Rd can be written as

v⋅∇T � k∇⋅∇T−sT = f : ð1Þ

Using the following dimensionless relations
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The general governing equation is written in a dimensionless form
as

∇T⁎� 1
Pe

∇⋅∇T⁎−DaT
⁎ = f ⁎: ð3Þ

In which f ⁎ is the dimensionless source term, Pe is the Peclet
number and Da is the Damköhler number, respectively, defined as
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It is assumed that Pe is equal in both directions. A similar
assumption is made for Da (see Fig. 1). In a two-dimensional system
(x*, y*) Eq. (3) can be written as
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−DaT⁎ = f ⁎: ð5Þ

Corresponding dimensionless boundary conditions for the rectan-
gular domain are:

a) Dissipation (see Fig. 1):

T⁎ = 0 for y⁎ = 0; 0≤ x⁎≤ 1and x⁎ = 0; 0≤ y⁎b 1
T⁎ = 1 for x⁎ = 1; 0≤ y⁎b 1and y⁎ = 1; 0≤ x⁎≤ 1:

ð6Þ

Nomenclature

Da Damköhler number
f a given source term
h a characteristic length (e.g. width of the domain)
k diffusion (conduction) coefficient
l characteristic element length
Pe Peclet number
s a source/sink term (sN0 represents production and

sb0 stands for dissipation)
T the field unknown
T1 a reference value of the field variable
v velocity vector
Wi linear weight function
xP position vector in the selected coordinate system

Greek symbols
ψi linear shape function

Superscript
⁎ represents the dimensionless variables

Fig. 1. Domain and the boundary conditions for the exponential regime.

Fig. 2. Results for Pe=10 and Da=−60 at y⁎=0.5 — exponential regime.

Fig. 3. Results for Pe=50 and Da=−20 at y⁎=0.5 — exponential regime.
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