

Available online at www.sciencedirect.com

International Communications in Heat and Mass Transfer 33 (2006) 959–965

www.elsevier.com/locate/ichmt

On a mixed nonstationary problem of heat conduction for a half-space χ

S.J. Matysiak ^{a,*}, A.A. Yevtushenko ^b

^a Institute of Hydrogeology and Engineering Geology, Faculty of Geology, University of Warsaw, Al. Żwirki i Wigury 93, 02-089 Warsaw, Poland ^b Faculty of Mechanical Engineering, Bialystok University of Technology, ul. Wiejska 45 C, 15-351 Białystok, Poland

Available online 7 July 2006

Abstract

The paper deals with some mixed nonstationary problem of heat conduction for a homogeneous rigid half-space. The body is assumed to be initially at zero temperature, the boundary plane is kept at a known temperature $f(t)$ for time $0 \le t \le t_0$ and is insulated for $t>t_0$. The exact solution is obtained by using the integral Fourier method. Some special case is solved in details. © 2006 Elsevier Ltd. All rights reserved.

Keywords: Temperature; Rigid homogeneous half-space; Heat conduction

1. Introduction

Many important problems related to nonstationary heat conduction in structures are being presented for engineering applications. One of them is thermography which is a technique based on local thermal infrared emission of a sample which is monitored (see, for instance Refs. $[1-3]$). The interaction of thermal waves with discontinuities of materials is used for nondestructive testing of ceramics, coatings, metals, polymers. The thermography and thermal sensitivity analysis [\[4\]](#page--1-0) require some solutions of initial-boundary value problems of heat conduction. The analytical and numerical method of solutions of unsteady heat conduction problems are presented in many papers, see for example Refs. [5–[10\].](#page--1-0) In this paper a mixed in time nonstationary problem of heat conduction for a homogeneous nondeformable half-space is considered. The half-space is assumed to be initially at zero temperature, the boundary plane is kept at a given temperature from time $t=0$ to $t=t_0$, where t_0 is constant, and is insulated for $t>t_0$.

The mixed boundary value problems are well-known in literature in cases when a part of boundary is kept at a given temperature and heat flux is described on the remained part of boundary (see for instance: crack problems, contact problems).

2. Formulation and solution of the problem

Consider a nonstationary heat conduction problem for a rigid homogeneous half-space. Referring to the Cartesian coordinate system (x, y, z) with the plane $x=0$ being the boundary surface of the half-space $x>0$, denote at the point

☆ Communicated by W.J. Minkowycz.

⁎ Corresponding author. E-mail address: s.j.matysiak@uw.edu.pl (S.J. Matysiak).

0735-1933/\$ - see front matter © 2006 Elsevier Ltd. All rights reserved. doi[:10.1016/j.icheatmasstransfer.2006.06.004](http://dx.doi.org/10.1016/j.icheatmasstransfer.2006.06.004)

 $x=(x, y, z)$ the temperature (strictly the deviation of the temperature from a reference state) by T. Let the distribution of temperature dependent only on time t is assumed on the boundary plane for $0 \le t \le t_0$, and for $t>t_0$ the body is thermally insulated. Moreover, the zero initial temperature is assumed.

The considered problem is one-dimensional and is described by

(a) the equation of heat conduction $[11]$:

$$
\frac{\partial^2 T(x,t)}{\partial x^2} = \frac{1}{k} \frac{\partial T(x,t)}{\partial t}, \quad x > 0, \ t > 0
$$
\n(2.1)

where k is the thermal diffusivity,

(b) the mixed-time boundary conduction

$$
T(0, t) = T_0 f\left(\frac{t}{t_0}\right) \quad \text{for } 0 \le t \le t_0
$$

$$
\frac{\partial T(0, t)}{\partial x} = 0 \quad \text{for } t > t_0
$$
 (2.2)

where $f(\cdot)$ is given function satisfying the following condition

$$
f(0) = 0 \tag{2.3}
$$

and T_0 is a given constant temperature.

(c) the initial condition

 $T(x, 0) = 0$ for $x \ge 0$ (2.4)

(d) the regularity condition in infinity

$$
\lim_{x \to \infty} T(x,t) = \lim_{x \to \infty} \frac{\partial T(x,t)}{\partial x} = 0, \quad t \ge 0.
$$
\n(2.5)

Denoting by

$$
\tau = \frac{t}{t_0} \tag{2.6}
$$

the Eq. (2.1) with the boundary condition (2.2) take the form

$$
\frac{\partial^2 T(x,\tau)}{\partial x^2} = \frac{1}{kt_0} \frac{\partial T(x,\tau)}{\partial \tau}, \text{ for } x > 0, \tau > 0,
$$
\n(2.7)

and

 $T(0, \tau) = T_0 f(\tau)$ for $0 \leq \tau \leq 1$

$$
\frac{\partial T(0,\tau)}{\partial x} = 0 \quad \text{for } \tau > 1 \tag{2.8}
$$

Using the cosine Fourier transform with the respect of x denoted by

$$
\widetilde{T}(\alpha,\tau) = \sqrt{\frac{2}{\pi}} \int_0^\infty T(x,\tau) \cos(x\alpha) dx
$$
\n(2.9)

we obtain from Eqs. (2.7) , (2.8) and (2.5) the following linear ordinary differential equations

$$
G(\tau) - \alpha^2 \widetilde{T}(\alpha, \tau) = \frac{1}{k t_0} \frac{\mathrm{d} \widetilde{T}(\alpha, \tau)}{\mathrm{d} \tau}, \quad \text{ for } 0 \le \tau \le 1,
$$

Download English Version:

<https://daneshyari.com/en/article/654511>

Download Persian Version:

<https://daneshyari.com/article/654511>

[Daneshyari.com](https://daneshyari.com)