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a  b  s  t  r  a  c  t

We  extend  the  Pressler’s  indicator  rate  formula  under  the  generalized  Reed  model  to account  for  the
impacts  of current  and  future  stochastic  disturbance  risk  on  the  current  harvesting  decision.  We  prove
that  that  the  mathematical  framework  of  the  Pressler’s  indicator  rate holds  under  the  generalized  Reed
model. We  apply  it to  the  management  of  longleaf  pine  to determine  the  optimal  harvest  age  under  the
risk  of wildfires.  We  determine  that  the  Pressler’s  indicator  rate formula  provides  a useful  framework
to  determine  the minimum  timber  salvage  increment  required  to decide  when  to  harvest  longleaf  pine
under  the  risk  of wildfire.
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Introduction

The indicator per cent formula developed by Max  Pressler
(Pressler, 1860) is considered a useful indicator of the economic
maturity of a forest stand (Gong and Löfgren, 2010). In his seminal
paper, Pressler recognizes that the variation in the timber value of
a forest stand is caused by the quantity increment, quality incre-
ment, and price increment. The sum of the rates of these three
increments adjusted for the timber value and land value repre-
sents Pressler’s indicator rate. As proven by Johansson and Löfgren
(1985), Pressler’s indicator rate represents the first order condi-
tion for the maximization of the Faustmann-based land expectation
value to determine optimal harvest age.

Catastrophic natural events (e.g., wildfires, storms, pest out-
breaks) continually shape the forest landscape. They also have a
direct economic impact on forest landowner decisions and value
of a forest stand. One of the most notable studies in this area was
explored by Reed (1984), who adapted the basic Faustmann model
to incorporate the impacts of stochastic natural disturbances using
a Poisson jump process on the optimal harvest age of a stand.
Unlike the traditional Reed approach, Susaeta et al. (2016) devel-
oped a model in which the risk of natural hazards, timber salvage
of the damaged timber crop, and economic and biological param-
eters of the model (stumpage prices, forest growth, discount rate
and regeneration costs) may  vary after successive forest rotations.1

Thus, this more flexible model allows the optimal harvest age to

E-mail address: asusaeta@ufl.edu
1 For example, the risk of natural disturbances is expected to increase over time

due to changing climatic conditions (Wear and Greis, 2012), and poor future eco-

change over successive timber crops. Although Pressler’s mathe-
matical framework also holds under the generalized Faustmann
formula including, respectively, timber and carbon benefits, from a
forest management perspective it is relevant to determine the prac-
tical usefulness of this indicator rate formula under a generalized
version of the Reed model (GRM henceforth).

This paper explores whether Pressler’s indicator rate formula
is applicable under such a dynamic and stochastic environment to
determine optimal harvest age, and how the impacts of current or
future decisions in the presence of increased natural disturbances
can affect the landowner’s harvesting decision. We  also consider
that the risk of rare natural disturbances can be described using
the Poisson distribution since it only requires historical data on
the frequency of natural disturbances (Amacher et al., 2009) and
has a clear physical and probabilistic meaning, allowing an easy
interpretation of the hazard event (Mandallaz and Ye, 1997).2 The
remainder of this paper is as follows: First, the underlying features
of the GRM are outlined. Next, the Pressler’s indicator rate formula
is developed under the risk of natural disturbances. Then, the indi-
cator is applied to a representative southern species, longleaf pine

nomic conditions can negatively affect timber salvage operations (Prestemon and
Holmes, 2008).

2 Although the Poisson stochastic process has been widely employed to model
rare natural hazards such as winds, wildfires, droughts, and insect outbreaks
(Amacher et al., 2005; Loisel, 2014; Taylor et al., 2013), other probability distribu-
tions such as the Weibull distribution (Staupendahl and Mohring, 2011), binomial
distribution (Diaz-Balteiro et al., 2014) and Gumbel distribution (Blennow and
Oloffson, 2008) have been suggested to model natural disturbances. The use of non-
parametric process has also been employed to model the arrival of hazard events
(Deegen and Matolepszy, 2015).
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(Pinus palustris Mill.), and the results are discussed. Conclusions
and recommendations for further research are offered in the last
section.

The generalized Reed model

We  present here the key relationships of the GRM. Further
details of the GRM can be found in Susaeta et al. (2016). We  assume
that a forest stand may  be damaged by a natural disturbance before
reaching the optimal harvest age. After the catastrophic event, the
forest landowner can salvage a proportion of the stand g and replant
a new forest stand. If the forest stand has reached the optimal har-
vest without being affected by a natural disturbance, the landowner
harvests the stand and replants to begin a new rotation. The prob-
ability of arrival (or arrival rate �) of a natural disturbance follows
a non-homogenous Poisson distribution process, i.e. it dependent
on the age of the stand, thus � = � (t).

It is assumed that the time between successive catastrophic
events is a random variable x (the age of the stand when a distur-
bance occurs), exponentially distributed with cumulative density
function 1 − e−m(x), where m (x) represents the cumulative sum of
the probability of arrival of a natural disturbance over time: m(x) =∫ x

0
�(q)dq and is increasing in x, thus dm

dx = � (x).  We  have consid-

ered that the probability of arrival increases over time, i.e., �′ (x) >
0. The probability density function of x before reaching the optimal
rotation age T(0 < x < T) is given by �(x)e−mx. The probability that
a disturbance event may  affect a forest stand before reaching the
economically optimal rotation age T is Pr (x < T) = 1 − e−mT and
the probability of the stand reaching the optimal rotation without
being affected by a disturbance event is Pr (x = T) = e−mT . We  also

assume that the forest stands are independent from each other with
respect to the risk the risks of catastrophic events; i.e., our model
applies only in situations where the risk of natural disturbances
does not depend on how the neighboring stands are managed.3

We  also consider that, regardless of the arrival of a natural dis-
turbance, for each timber crop, a landowner will have to replant a
new timber crop, with different levels of stumpage prices and for-
est growth, risk of natural disturbances, replanting costs, discount
rates and salvageable portions. As such, the optimal harvest age will
fluctuate from timber crop to timber crop. The parameters of the
GRM model are defined in Table 1. The expected net present value

3 Other studies have suggested that neighboring stand structures can affect
the probability of arrival of natural disturbances (Blennow and Oloffson, 2008;
Lohmander, 1987; Ziegler et al., 2017). Lohmander (1987) determined that the
windthrow probability is strongly dependent on the tree height and stand density
in  the neighbor stand. Deegen and Matolepszy (2015) found that, under storm risk,
developing protection management practices in neighboring stands increases the
profitability of the stand, and extends the optimal harvest age in the presence of low
timber prices.

of harvesting the stand at the optimal harvest age or salvaging a
portion of the stand for the first timber crop Y1 is

Y1 = −C0 + [V1(t1) − C1 + e(r1t1+m1(t1))

∫ t1

0

∅1dx1]e−(r1t1+m1(t1)) (1)

In Eq. (1), the landowner incurs the regeneration costs C0 at the
beginning of the first timber crop. The landowner will obtain the
following economic revenues for the first timber crop: a) timber
benefits V1 (t1),  i.e., the product between the stumpage price P1 (t1)
and the volume of the stand Q1 (t1) at the time of harvesting if the
stand has not been affected by a natural disturbance; and 2) net
timber revenues due to salvage

∫ t1
0

∅1dx1, i.e., the cumulative sum
of the present value of the marginal returns due to timber salvage
∅1 = �1(x1)[ḡ1(x1)V1(x1) − C1]e−(r1x1+m1(x1)) if a natural disturbance
arrives before the optimal harvest age. After harvesting or salvaging
a portion of the stand, the landowner will incur replanting costs C1
to start the second timber crop. All future net economic revenues
are discounted accordingly using the term e−(r1t1+m1(t1)) to obtain
the expected net present value for the timber crop.4 The same treat-
ment applies for successive timber crops. Under the GRM, the land
expectation value at the beginning of the ith timber crop is defined
as LEVi. The land expectation value at the beginning of the first
timber crop LEV1 is as follows:

LEV1 = −C0 + [V1(t1) − C1 + e(r1 t1+m1(t1))

∫ t1

0

∅1dx1]e−(r1 t1+m1(t1)) + [V2(t2) − C2+e(r2 t2+m2(t2))

∫ t2

0

∅2dx2]e−(r1 t1+m1(t1))e−(r2 t2+m2(t2)) + . . .

=  −C0 +
∑∞

i=1
[Vi(ti) − Ci + e(ri ti+mi (ti ))

∫ ti

0

∅idxi]e
−
∑i

j=1
(rj tj+mj (tj )) (2)

Eq. (2) represents the sum of the expected economic returns – due
to either harvesting or salvaging timber – under the risk of a natural
disturbance associated with infinite number of successive timber
crops. The expected value of each timber crop is discounted to the

beginning of the first timber crop using the term e
−
∑i

j=1
(rjtj+mj(tj)),

where i and j are indexes to represent timber crops. Eq. (2) can be
re-written as follows:

LEV1 = −C0 + [V1(t1) + e(r1 t1+m1(t1))

∫ t1

0

∅1dx1]e−(r1 t1+m1(t1)) + e−(r1 t1+m1(t1)

{
−C1 +

∑∞

i=2
[Vi(ti) − Ci + e(ri ti+mi (ti ))

∫ ti

0

∅idxi]e
−
∑i

j=2
(rj tj+mj (tj ))

}

= C0 + [V1(t1) + e(r1 t1+m1(t1))

∫ t1

0

∅1dx1]e−(r1 t1+m1(t1)) + e−(r1 t1+m1(t1))LEV2 (3)

Eq. (3) suggests the linkage of land values between successive tim-
ber crops: LEV1 depends on LEV2, LEV2 depends on LEV3and so on.
The full derivation of the conditions for reaching the optimal har-
vest age can be found in Susaeta et al. (2016). Here, we  present the
first order condition for the optimal harvest age ti:

∂LEV1

∂ti
= ∂Vi(ti)

∂ti
+ �i(ti)[ḡi(ti)Vi(ti) − Ci] − [ri + �i(ti)]Vi(ti) + [ri + �i(ti)]LEVi+1 = 0

∂Vi(ti)

∂ti
+ �i(ti)[ḡi(ti)Vi(ti) − Ci] = [ri + �i(ti)]Vi(ti) + [ri + �i(ti)]LEVi+1

(4)

4 The discount factor e−(r1 t1+m1(t1)) also acts as a common denominator for
the  terms between [] in Eq. (1). However, the timber revenue due to sal-
vage (the integral term) is already discounted due to the definition of �1.
Therefore, we need to use the compounding factor e(r1 t1+m1(t1)) for the inte-
gral term to maintain the present value of the timber salvage revenues.
This  is simply illustrated by the following:Y1 = −C0 + [V1(t1) − C1]e−(r1 t1+m1(t1)) +∫ t1

0
∅1dx1 = −C0 + [V1(t1) − C1 + e(r1 t1+m1(t1))

∫ t1

0
∅1dx1]e−(r1 t1+m1(t1)) .
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