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Two peculiar convection patterns–re-oscillation and stable non-centrosymmetric convection–are observed
when two-dimensional double-diffusive convection in a porous enclosure (aspect ratio=1.5) is analysed
numerically. The top and bottom walls of the enclosure are insulated; constant and opposing heat and mass
fluxes are prescribed on the vertical walls. Re-oscillation occurs when the convection pattern changes from
centrosymmetric to non-centrosymmetric. When the buoyancy ratio, which generates re-oscillation
convection, is marginally lower, the convection pattern changes to stable non-centrosymmetric. These
two convection patterns can be observed only for limited values of the Rayleigh number, Lewis number, and
buoyancy ratio.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Various researchers have theoretically and numerically studied
double-diffusive convection in a fluid-saturated porous enclosure due
to the opposing heat and mass fluxes on the vertical walls [1–9]. In
these studies, the numerical calculations yielded oscillatory solutions
[7–9]. It was observed that the competition between the heat and
mass transfers with different diffusivities played an important role in
generating oscillations even at low Rayleigh numbers. The convection
pattern in a double-diffusive porous medium is determined by four
non-dimensional parameters: the aspect ratio (A), Lewis number (Le),
Rayleigh–Darcy number (R), and buoyancy ratio (N). Among the four
parameters, N is expected to have the most significant effect on the
characterization of the convection pattern and the oscillation, since N
is the ratio of heat intensity to mass convection.

We have been investigating the double-diffusive convection in a
fluid-saturated porous medium for more than 15 years. In 1994 [7],
we observed oscillating convection in a double-diffusive porous
medium, which, to the best of our knowledge, had not been observed
before. We observed that oscillating convection occurs when R=100;
Le=10, 20, 30, 40; and A=3, 5, and 10. Further, we observed a
monotonous oscillation pattern over one cycle. However, the
characteristics of the oscillating region are not clear because the
oscillating region of N was calculated at intervals of ΔN=0.05. In
2002 [8], we investigated the convection pattern only for A=5; the

oscillating region in graphs of N vs. Le for varying Rwas determined at
intervals of ΔN=0.01. In 2007 [9], we found three peculiar types of
oscillations.Wediscovered the re-oscillationphenomenon,which is one
of themost peculiar types of oscillation. This phenomenon occurs when
the convection pattern changes from centrosymmetric to non-centro-
symmetric. Since this transition takes a very long time, the re-oscillation
typically has a very long period. The re-oscillation phenomenon can be
observedwhen A=2 and 2.5. As A increases, complex oscillation can be
observed more often.

In the present research, we analyse the convection patterns only
when A=1.5. If N becomes smaller than the value at which re-
oscillation is observed, the Nusselt number (Nu) changes abruptly
with time, and the convection pattern changes from centrosymmetric
to stable (without oscillation) non-centrosymmetric, which is another
peculiar convection pattern that we have observed when A=1.5 for
the first time.

In addition, we numerically study the double-diffusive convection
(re-oscillation and stable non-centrosymmetric convection) in a fluid-
saturated porous enclosure due to opposing heat and mass fluxes on
the vertical walls. The values of R, Le, and the transition time are also
investigated. One of the main objectives of the present research is to
prepare an R–N map of the re-oscillation region and the stable (no
oscillation) non-centrosymmetric region.

2. Problem statements

The geometry used in the mathematical model is shown in Fig. 1.
We consider a two-dimensional vertical enclosure with an aspect
ratio A. This enclosure is filled with a homogeneous, fluid-saturated
porous medium. The top and bottom walls of the enclosure are
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insulated. Constant heat flux (ΛT) and mass flux (Λc) are prescribed
through the vertical walls. The following equations give the
momentum conservation in the Darcy regime with the Boussinesq
approximation:

u = −∇P−Rðθ−NφÞey ð1Þ

The equation of continuity is

∇⋅u = 0 ð2Þ

The equations for mass and thermal energy conservation are

ε
∂θ
∂t + u⋅∇θ = ∇2θ ð3Þ

and

σ
∂φ
∂t + u⋅∇φ = Le∇2φ ð4Þ

respectively, where

σ =
εðρCpÞliquid + ð1−εÞðρCpÞsolid

ðρCpÞliquid
ð5Þ

The boundary conditions are

∂θ
∂x = −1;

∂ϕ
∂x = −1; u = 0; and

∂v
∂x = 0at jx j = 1 ð6Þ

and

∂θ
∂y = 0;

∂ϕ
∂y = 0; v = 0; and

∂u
∂y = 0 at jy j = A ð7Þ

The initial conditions are

θ = 0;ϕ = 0; and u = 0 at t = 0 ð8Þ

The dimensionless parameters are defined as follows:

A =
H
h
; Le =

κ
D
; R =

kgβΛch
2

νD
; andN =

αΛT

βΛc
ð9Þ

Governing equations (Eqs. (1)–(4)) are solved numerically by the
finite difference method using the boundary values (Eqs. (6) and (7))
and initial conditions (Eq. (8)). The governing equations and the
boundary conditions are discretised over a network of 202×302 grids
with uniform spacing. No grid point is set on the physical boundaries
(|x|=1 and |y|=A). The first and last grid points are placed at a
distance of half a grid from the boundaries. The boundary conditions
at the walls are applied to these points. The numerical scheme used
here is second-order accurate in space and first-order accurate in
time. The matrices obtained from the governing equations are solved
under the given boundary conditions by the conjugate gradient
method. For further details regarding this method, please refer to Ref.
[7].

In the present study, we performed calculations for the following
cases: the aspect ratio A=1.5; the Lewis number Le=10, 20, and 30;
and the non-dimensional time is less than 400. We studied the types
of time-dependent Nu in this case because it is difficult to observe a
drastic change the time-dependent Nu after t=400.

3. Results and discussion

Fig. 2 shows a graph of Nu as a function of time and the flow
pattern when R=500, Le=20, and N=0.445. Such a pattern was
referred to as the ‘re-oscillation case’ in a previous study. The re-
oscillation case is also observed when A=1.5. Re-oscillation occurs
because the convection pattern changes from non-centrosymmetric
to centrosymmetric. Since this change requires a very long time, the
re-oscillation typically has a very long period. For further details
regarding the re-oscillation case, refer to Ref. [9]. In the case of these
stream functions, positive values correspond to the clockwise flow

Nomenclature

A aspect ratio [−]
D solute diffusivity [m2 s−1]
f non-dimensional frequency [−]
g acceleration due to gravity [m s−2]
2h width of the enclosure [m]
2H enclosure height [m]
k permeability [m2]
Le Lewis number [−]
N buoyancy ratio [−]
Nu Nusselt number [−]
P pressure [−]
R Rayleigh number [−]
t non-dimensional time [−]
u non-dimensional velocity vector=(u,v) [−]
x non-dimensional horizontal coordinate [−]
y non-dimensional vertical coordinate [−]

Greek symbols
α coefficient of thermal expansion [K−1]
β coefficient of concentration expansion [m3 mol−1]
ε porosity [−]
ϕ non-dimensional temperature [−]
κ thermal diffusivity [m2 s−1]
Λ c horizontal concentration gradient prescribed on the

side wall [mol m−4]
ΛT horizontal temperature gradient prescribed on the

side wall [K m−1]
ν kinematic viscosity [m2 s−1]
θ non-dimensional concentration [−]
σ heat capacity ratio [−]

Fig. 1. Geometry of the porous enclosure.
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