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Land supply elasticities determine the rates of land conversion in global policy models. However, they are only
available for few countries in the world. Therefore, analysts seeking to improve the spatial resolution of their
models are forced to impose regionally homogeneous parameters over highly heterogeneous regions. This article
estimates spatially explicit land supply elasticities using gridded data for the American continent. These esti-
mates reasonably reproduce changes in land use observed at different levels of geographical aggregation across
the continent. Plugging our estimates in a previous analysis of the land-use effects of eliminating global un-

sustainable irrigation, reveals higher pressure to convert land in the ecoregions in the south of the continent that
have experienced most rapid cropland expansion in the recent past.

1. Introduction

Global economic models are an essential tool in the analysis and
design of policies related to the sustainability of global agriculture. For
instance, in the U.S., regulation of the ethanol industry is based on
model predictions of greenhouse gas emissions from domestic and
foreign land use changes caused by biofuel mandates (Babcock, 2009).
Beyond biofuels, global trade models have been used to model the land
use changes associated with technological change (Villoria et al., 2014),
international trade (van Meijl et al., 2006; Verburg et al., 2009), climate
change mitigation (Golub et al., 2009), and agricultural policies
(Eickhout et al., 2007). Yet, although global models are useful to
quantify aggregate outcomes, policy decisions are often made at very
localized levels. Recognizing the interdependence between global dri-
vers of land use change and local stressors and policy responses, there is
a growing demand to increase the spatial resolution of economic
models so that they produce results that are both consistent and accu-
rate at different geographic scales (Verburg et al., 2013).

A crucial obstacle in the development of better models is the paucity
of data and parameters characterizing the heterogeneity of economic
responses across space. This paucity is particularly acute in many de-
veloping and emerging economies, which are precisely the places where

the transformations of the landscape are being most acute. A prime
example of this paucity are the land supply elasticities. The land supply
elasticity is the percentage change in cropland following a one percent
increase in the land rents accruing to agriculture (relative to alternative
uses.) These elasticities determine the amount of natural lands that are
converted into cropland and, by extension, condition model predictions
about environmental metrics linked to land conversion, such as
greenhouse gases emissions, biodiversity losses, or changes in the hy-
drological balance. As economic models increase their spatial resolu-
tion, modelers have to grapple with the fact that the available land
supply elasticities are either calibrated to match country-level historical
patterns of land use changes (Taheripour and Tyner, 2013) or based on
econometric evidence which is heavily focused on the U.S. (Lubowski,
2002; Ahmed et al., 2008).

This article contributes to improve the ability of economic models to
produce policy insights consistent across geographic scales by esti-
mating spatially heterogeneous land supply elasticities. We focus on the
contiguous countries in the Americas, from Canada to Argentina. To
preview our main results, we find that the estimated elasticities rea-
sonably reproduce actual changes in cropland observed by Lark et al.
(2015) and Graesser et al. (2015) in the US and Latin America. We also
find that using these elasticities for policy analysis does indeed provide
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more refined insights than current practice. In particular, the use of our
elasticities for the analysis of the consequences of eliminating un-
sustainable irrigation by Liu et al. (2017) suggests increased pressure in
the Brazilian Cerrado and other ecoregions of South America already
experiencing large pressures for land conversion to agriculture.

The rest of the article is structured as follows. Section 2 discusses the
conceptual and empirical underpinnings of a strategy to spatialize the
country level supply responses combining the standard theory of land
use choice with von Thiinen's model of location-determined land rents.
Section 3 presents the regression results and discusses the determinants
of the estimated land supply elasticities. Section 4 compares prediction
of our estimates to actual changes in cropland observed at the level of
ecoregions or subnational units. Section 5 demonstrates the use of our
estimates by plugging them in the gridded model used by Liu et al.
(2017) to explore the consequences of more rational global irrigation
practices. Section 6 concludes the article.

2. Modeling framework and empirical strategy
2.1. Theory

We define a land supply schedule as the functional relationship
between the quantity of land converted from a natural cover (e.g.,
forests) to agriculture and the agricultural land rents. To fix ideas, using
Z; and R; to denote the share of cropland and land rents in each gridcell
i, the land supply schedule is given by:

Zi= &R, (@)

where ¢/ is the land supply elasticity in gridcell i. In principle, a re-
gression of Z; on R; can be used to get an estimate of ¢". However,
calculating R; requires gridcell level input and output prices.
Unfortunately, spatially explicit data on either prices or land rents are
largely unavailable for most countries of the world.

Following Chomitz and Gray (1996), spatially disaggregated land
rents can be approximated using Von Thiinen's assumption that spatial
differentials in output and input prices are related solely to differences
in transport costs to major markets." This allows mapping (up to a
proportionality factor) land rents in each gridcell onto market access
(A) and a vector of k fixed biophysical and socioeconomic covariates
(Skrip) that influence land use choices. Formally:

R < f(Ai, Skrip), k=1, .,K.

(2)

Substituting (2) in (1) allows expressing the land supply schedules in
terms of market access and land suitability, both of which are readily
available in the gridded maps described in the Data subsection just
below:

Z; = &f (Ai, Sepip)- 3

A caveat to keep in mind is that in this strategy, the resulting
elasticity is with respect to market access and not with respect to land
rents. Under this modeling framework, these elasticities are propor-
tional to each other, i.e. ¢ o« €}, but without information on land rents
at each gridcell, we are unable to determine the proportionality factor.
Nevertheless, to the extent that the spatial heterogeneity of the land
supply responses can be reasonably considered to be invariant to scale,
the estimated elasticities convey useful information about geographic
patterns of supply response. We empirically validate such usefulness
below, where the changes in cropland implied by our estimates are
compared to observed changes at different levels of geographic ag-
gregation.

Under standard assumptions about producer behavior (in RA S-1),

! Formal development of the model and derivation of the regression equation is in
Section S-1 of the Reviewers’ Appendix to be posted as Supporting On-line Materials upon
publication.
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Table 1
Descriptive statistics.
Mean s.d. Min Max
Cropland (share of gridcell, 0-1) 0.12 0.22 0.00 1.00
Market access index (0-1) 0.12 0.21 0.00 1.00
Area equipped for irrigation (% of 1.51 6.96 0.00 100.00
gridcell)

Precipitation (mm) 1148.75 788.75 0.00 7513.00
Temperature (°C) 17.06 7.93 —-0.78 28.33
Elevation (m) 666.80 801.87 —224.00 5419.00
Soil fertility (IIASA classes) 4.19 2.14 1.00 7.00
Soil carbon density (kg-C/m?) 5.92 2.45 1.33 24.88
Soil pH (0-14) 6.08 1.00 4.20 8.22
Built-up land (% of gridcell) 0.58 3.94 0.00 100.00

Protected areas (binary variable)
Unprotected (U)
Protected (P)

(% of gridcells under each class)
87
13

Natural potential vegetation (% of gridcells under each class)

Shrublands (S) 13
Tropical forests (Ft) 28
Temperate forests (FT) 28
Savannas &Grasslands (G) 29
Other 3

Notes: These are summary statistics for the sample of 43,311 observations (out
of a total of 433,096) used to estimate the elasticities in Fig. 3. The soil fertility
constraints categories employed in the regression are: no constraints, slight
constraints, moderate, constrained, severe, very severe, and unsuitable for
cultivation which were obtained from ITASA/2012. Sources and steps taken to
preprocess the data data are in Table S-1 of the RA.

Expression (3) can be estimated as a fractional logistic regression
model. The estimating equation that we take to data is:

Z; = A[ao + mA; + Z akSk[i]Ei:|-
3 (€]

where A is the logistic distribution. The elasticity of the changes in
cropland to changes in market access for a specific gridcell is given by:

BZi Ai ~ ~ 5 2 Ai
€ = X — =i & + BA; + & log(Skp) |da X —-
i A Z l[ 0 1A Zk: e log( k[zJ)] 1 2 )

where A is the probability distribution function of the logistic dis-
tribution and Z; are fitted cropland shares using the parameter esti-
mates (&) from Eq. (4). Note that the partial effects 3Z;04,~! are specific
to each gridcell. This is a property of the logistic model that gives us
great flexibility to aggregate the elasticities to different regions or re-
levant units of spatial analysis.

2.2. Data

Table 1 reports the descriptive statistics of all the variables used to
estimate Eq. (4). The dependent variable is the share of each gridcell
that was under cropland circa year 2000. This variable was derived by
Ramankutty et al. (2008) by combining agricultural inventory data and
satellite-derived land cover data.

The market access variable comes directly from Verburg et al.
(2011), who combines spatially explicit global data on physical dis-
tance, network infrastructure, and underlying terrain to develop a high
spatial resolution (1 km?) index of market accessibility determined by
the traveling time from each gridcell to the closest and most influential
market. The influence of the market is given by market size: Large
markets include cities with more than 750,000 inhabitants and mar-
itime ports, while small markets include cities with more than 50,000
inhabitants. The authors assume that large markets are twice as im-
portant as smaller markets, and for each grid cell i in the global map,
they assign a market influence index (A;) based on traveling time. The
market access index ranges from O (inaccessible) to 1 (on a major
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