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We propose an efficient Green element method (GEM) technique for the solution of the generalized Graetz
problem. The main point is to illustrate how GEM concepts can be adapted to handle heat or mass transport
in tube flow; with axial conduction first ignored but later included. Several numerical examples are tested to
demonstrate this numerical approach; for all cases, it is seen that GEM offers an elegant and in comparison
with the problem difficulty, a reliable and straightforward approach.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Because of its importance, theGraetz problem, is still an area of active
research. Earlier work on the solution of the Graetz problem was based
on investigations of thermally developing flow for cases of forced heat
transfer in a circular pipe with various simplifying assumptions. Several
researchers have presented analytical solutions to this problem by
converting the eigenvalue problem into a system of ordinary differential
equations in which the eigenvalues are determined (Barron et al. [1]).
Numerous strategies including the introduction of a rapidly converging
series solutions were developed to facilitate the determination of more
eigenvalues with greater accuracy (Sellars et al. [2]). Adopting the
method of Papoutsakis et al. [3] for laminar pipe flow,Weigand [4] came
up with an entirely analytical solution to the extended turbulent Graetz
problem with Dirichlet wall boundary conditions. His solution method
was found to be applicable for a broad class of problemsdescribed by the
same governing equation. Foucher and Mansour [5] employed a novel
approximate analytical solution for laminar forced convection in parallel
plate ducts subjected to periodic variations of inlet temperatures with
time. Their work neglected axial heat conduction along the walls but
took into account the transverse temperature gradient inside thewalls as
well as fluid-to-solid heat capacitance ratio effect on the periodic inlet
temperature. Toverify their proposed analytical Galerkin technique, they
solved the sameproblemusinganumericalfinite differencemethod, and
later compared the results. An excellent account of related work can be
found in Shah and Bhatti [6], as well as Guedes and Ozisik [7].

Although conventional boundary element techniques have been
used in the past to solve transport problems, such as those by Brebbia
and Skerget [8], Taigbenu and Liggett [9], and Cheng [10], there is a
noticeable scarcity of reference to the application of BEM for the
numerical solution of the generalized Graetz problem, especially for
cases where axial conduction is included. The difficulty in obtaining an

analytical Green's function power law-type axial velocity profiles
applicable to this type of problem as well as the inability to deal
efficiently with the problem domain must have accounted for this. To
address this problem, Ramachandran [11] developed a methodology
which applied boundary-element concepts at intervals or elements in
the radial direction rather than for the entire domain of integration. In
order to solve the resulting integral equation, he approximated the
variation of the dependent variable by a cubic polynomial within each
subdomain. The equations were then given in terms of the nodal
variables. Considerable effort wasmade to eliminate the radial diffusion
operator by the application of some specialized weighting functions.
There was no attempt to deal with cases involving axial conduction.

Recent modifications of BEM focus on the fact that the problem
domain holds the key to converting BEM into a highly efficient and
robust numerical technique. This objective has been explored via two
different routes. First as a boundary driven approach (Nardini and
Brebbia [12], Popov and Powers [13], Dargush and Banerjee [14]); and
as a hybrid BEM–FEM domain driven approach (Taigbenu and
Onyejekwe [15], Onyejekwe [16]). Application of these methods has
become more widespread because of the far more efficient accurate
results obtained in applying them to problems that have sometimes
proved intractable to the standard BEM technique.

Several numerical experiences with BEM have led to encounters with
domain dominant problems for which the standard BEM is at a
disadvantage in comparison with domain based techniques. This has
motivated the need to modify the BEM in such a way that domain
integration could be better addressed. One of suchmethods, theDRM-MD
integral equation method (Popov and Powers [13]) transforms domain
integrals intoboundary integrals at the contourof each subregion,byusing
the Dual Reciprocity Method (DRM). While this method goes a step
further than the DRM (Nardini and Brebbia [12]) in dividing the problem
domain into several subregions or elements, it stops short of actually
implementing cell integration, and instead it still keeps faith with BEM
methodology by transferring all such integrations to the boundary of the
problem domain. On the contrary, GEM departs from the DRM-MD
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approach byembarking on a FEM type domain discretization. As a result it
avoids much of the limitations attributed to the DRM. This has paved the
way to significantly extending the range of application of BEM.

The work reported herein deals with the application of a novel
GEM formulation to a variation of the classical Graetz problem
involving heat transfer in two spatial directions one along the axis and
the other in the direction perpendicular to the flow direction in
annular or axisymmetric cylindrical channels. This problem finds a
number of industrial applications involving heat transfer through
annular channels, tubular reactors and flow in a circular tube with a
constant wall heat flux. GEM's robustness is demonstrated by how
efficiently the solutions are obtained.

2. Problem formulation

If axial conduction is neglected, the general problem under
consideration can be represented by the following differential equation
(Ramachandran [11])

ρcpu rð ÞAT
Ax

=
k
rv

A

Ar
rv
� �

+ M1T + M2 ð1Þ

where ρ is the fluid density, cp is the specific heat of fluid, x is the axial
coordinate, r is the radial coordinate and is perpendicular to flow
direction, k is the thermal conductivity, v=0, 1, 2, to represent 1D
diffusion operator for an infinite slab, axisymmetric cylinder or sphere
(for this application v=1). The termM1T represents a linear volumetric
source,whileM2 is a constant source term. A simple power law is used for
representing the local axial velocity at position r (Ramachandran [17])

u rð Þ = umax 1− r
R

n + 1ð Þ
n
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ð2Þ

where R is the pipe radius, n is the power law indexof flow field and umax

is the maximum velocity at r=0, and is given by

umax = uav
n + 1 + n α + 1ð Þ

n + 1

� �
ð3Þ

where uav is the average velocity of fluid. After the chores of non-
dimensionalization, Eq. (1) becomes
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where θ, a time like variable, is a dimensionless axial distance : x/R(k/
ρcp umaxR), y is a dimensionless radial coordinate, β=(n+1)/n, M is a
dimensionless heat generation term (M1R

2/k), φ is the dimensionless
temperature (T/Tref), and Br is the Brinkmann number (k2R2/TRefk). The
following boundary conditions specify Eq. (4)

ðiÞ At entry of tube θ = 0ð Þ;u = 1:0:
ðiiÞ Aty = 0 Mu=My = 0:
ðiiiÞ Aty = 1 a1Mu =My + a2u = a3 θð Þ:

ð5Þ

3. Green element solution method

Our main task here is to transform Eq. (4) into an integral form.
This is achieved via the Green's second identity. We initiate this step
by introducing into Eq. (4) a complementary equation

j2G = δ x − xið Þ ð6aÞ

whose solution is given by

G =
jx − xi j + Lð Þ

2
ð6bÞ

where L is an arbitrary constant and is set to represent the longest
element in the problem domain. The discretized version of the
governing equation is:
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where H(x) is the Heaviside function, and ψ is the spatial derivative of
the dependent variable, λ is a parameter which specifies the location
of the source node by using the properties of the dirac delta function.
We mention in passing here that the GEM formulation uses the
fundamental solution of the highest order of derivative term of the
governing equation. This has been found to be a very utilitarian
approach because it remains the same for different types of problems
including linear nonlinear and heterogeneous problems. The solution
of Eq. (7) on each element of the problem domain emphasizes GEM's
finite element component. For example, expressing Eq. (7) on a typical
2-node element results in the following compact matrix equation:
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where

Zij =
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Sj
y
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Details from earlier work (Onyejekwe [15]) shows how Eq. (8a)
can be represented as:
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Eq. (8c) can be expressed differently by making the flux term
instead of the spatial derivative of the scalar variable one of the
dependent variables. As a result, Eq. (8c) can now be expressed as
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where ζ=−q/k. The coefficients of Eq. (8d) have been described
elsewhere (Onyejekwe [16]), except Zij which is given by
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