
Unsteady MHD free convection of a micropolar fluid between two parallel porous
vertical walls with convection from the ambient☆

Joaquín Zueco a,⁎, P. Eguía c, L.M. López-Ochoa b, J. Collazo c, D. Patiño c

a Departamento de Ingeniería Térmica y de Fluidos, UPCT, Campus Muralla del Mar, Cartagena 30202, Spain
b Departamento de Ingeniería Mecánica, Universidad de La Rioja, C/Luís de Ulloa, 20, E-26004 Logroño (La Rioja), Spain
c Departamento de Ingeniería Mecánica, Universidad de Vigo, E.T.S.I.I., Campus Lagoas-Marcosende 36310, Vigo (Pontevedra), Spain

a b s t r a c ta r t i c l e i n f o

Available online 12 January 2009

Keywords:
Free convection
Micropolar fluid
Viscous dissipation
Parallel walls vertical
Network model

The present work is concerned with the unsteady free convection flow of an incompressible electrically
conducting micropolar fluid, bounded by two parallel infinite porous vertical plates submitted to an external
magnetic field and the thermal boundary condition of forced convection. The governing equations are solved
using a numerical technique based on the electrical analogy, where only previous spatial discretization is
necessary to obtain a stable and convergent solutionwith very lowcomputational times. To solve the system of
algebraic equationswith time as continuous function, an electric circuit simulator is used. Thismethod permits
the direct visualization of the local and/or integrated transport variables (temperatures and velocities) at any
point or section of the medium. Numerical results for temperature, velocity and microrotation are illustrated
graphically.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The dynamics of micropolar fluids has attracted considerable at-
tention during the last few decades because traditional Newtonian
fluids cannot precisely describe the characteristics of fluid flow with
suspended particles. Erigen [1] developed the theory that the local
effects arising from the microstructure and the intrinsic motion of the
fluid elements should be taken into account. The theory is expected to
provide amathematical model for the Non-Newtonian fluid behaviour
observed in certain man-made liquids such as polymers, lubricants,
fluids with additives, paints, animal blood and colloidal and suspen-
sion solutions, etc. The presence of dust or smoke, particularly in a gas,
may also be modeled using micropolar fluid dynamics. Later, Erigen
[2] extended the theory of thermo-micropolar fluids and derived the
constitutive laws for fluids with microstructures.

Micropolar fluids have recently received considerable attention due
to their potential application in many industrial processes; for example,
in continuous casting glass-fiber production, paper production, metal
extrusion, hot rolling, wire drawing, drawing of plastic films, metal and
polymerextrusionandmetal spinning. BalaramandSastry [3] solved the
problem of a fully developed free convection flow in a micropolar flow.
Agarwal and Dhanapal [4] obtained a numerical solution to study the
fully developed free convection micropolar fluid flow between two
parallel with constant suction (or injection). Srinivasacharya et al. [5]
studied the effects of microrotation and frequency parameters on an

unsteady flow of micropolar fluid between two parallel porous plates
with a periodic suction. El-Hakiem [6] obtained a similarity solution for
the flow of a micropolar fluid along an isothermal vertical plate with an
exponentially decaying heat generation term and thermal dispersion.

When magneto-hydrodynamic effects are added to the microrota-
tion, an interesting new problem arises due to several engineering
applications such as in MHD electrical power generation, designing
cooling system for nuclear reactors, etc., wheremicrorotation provides
an important parameter for deciding the rate of heat flow. Gorla et al.
[7] developed a numerical scheme to solve the steady free convection
from a vertical isothermal plate in a strong cross magnetic field im-
mersed in a micropolar fluid. El-Hakiem et al. [8] analysed the effect of
viscous and Joule heating on the flow of an electrically conducting and
micropolar fluid past a plate whose temperature varies linearly with
the distance from the leading edge in the presence of a uniform
transverse magnetic field. Helmy et al. [9] studied the unsteady flow
MHDof a conductingmicropolar fluid, through a porousmedium, over
an infinite plate that is set in motion in its own plane by an impulse.
Bhargara et al. [10] obtained a numerical solution of a free convection
MHDmicropolar fluid flowbetween two parallel porous vertical plates
by means of the quasi-linearization method. By means of a similarity
transformation and using the numerical scheme of Chebyshev finite
difference, Eldabe andMahmoud [11] solved the problemof aflowpast
a stretching surface with both heat and mass transfer, Ohmic heating
and viscous dissipation.

The main objective of this study was to analyse the unsteady free
convection from two parallel porous vertical plates that exchange heat
with an external fluid. Between these plates an electrically conducting
micropolarfluid is placed in the presence of a strongcrossmagneticfield.
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The analysis is based on numerical solution of full governing equations
using the Network Simulation Method (NSM). Numerical results are
given graphically for the velocity, microrotation and temperature un-
steady and steady-state profiles when Λ (material parameter), Re (cross

flow Reynolds number), γ1 (heat generated parameter), Ha (Hartmann
number), Bi1 and Bi2 (Biots numbers), Pr (Prandtl number) are modified.
The effect of Joule heating is also studied.

NSM initially requires spatial discretization to be applied to the
transient boundary-layer equations, thus providing a set of ordinary
differential equations, one for each control volume.With the application
of the electrical–thermal-motion analogy an elemental network model
(elemental cell or elemental control volume) is developed, which,
extended to all the medium, together with the boundary conditions, is
solved by means of a program commonly used to simulate electrical
circuits, Pspice [12]. The main advantage of the method is that time
derivatives are not replaced by finite differences (similar to the method
of lines [13]), but only require finite-difference schemes for the spatial
variable. In this way, the time remains as a continuous variable, which
results in greater accuracy and no time interval needs to be established
by the programmer. Besides, the method does not require convergence
criteria to solve the finite difference equations resulting from the dis-
cretization of the partial difference equations of the mathematical
model, since the powerful software Pspice does the work.

2. Mathematical model

Consider an unsteady, laminar, fully developed free convection
flow of an incompressible micropolar fluid flowing between two
infinite parallel porous vertical walls submitted to a strong magnetic
field H0 in the direction normal to the plate. Both the walls will be
assumed to have a negligible thickness and to exchange heat with an
external fluid by convection. Outside the plate, there is a quiescent
ambient fluid at a constant temperature T∞ with u and v denoting,
respectively, the velocity components in the x and y direction, where
x is vertically upwards and y is the coordinate perpendicular to x.
There is a component of microrotation in the direction normal to x and
y, (0,0,n). All fluid properties are considered to be constant except for
the density variationwhich induces the buoyancy force. The transient,
two-dimensional flow can be shown to be governed by the following
boundary layer equations,

Continuity equation:

Av=Ay¼0 ð1Þ
The integration of Eq. (1) gives v=v0 (constant)

Momentum equation:

Au=At + v0Au=Ay = υ + K=ρð ÞA2u=Ay2 + βg T−T0ð Þ + K=ρ An=Ay−uσH2
0=ρ

ð2Þ
Energy of angular moment:

ρj An=At + v0ρj An=Ay = γ A
2n=Ay2−K 2n + Au=Ayð Þ ð3Þ

Energy equation:

ρcpAT=At + ρcpv0 AT=Ay = k A2T=Ay2 + μ + Kð Þ Au=Ayð Þ2 + γ An=Ayð Þ2

+ 2K n2 + nAu=Ay
� �

+Q + u2σH2
0

ð4Þ

with the following initial and boundary conditions:

For tV0;u = 0;n = 0; T = T0 ð5aÞ

For tN0;u = 0; v = v0;n = 0; −kwAT=Ay y = 0ð Þ = h1 T1−T y = 0ð Þ
� �

at y = 0 ð5bÞ

u = 0; v = v0;n = 0; −kwAT=Ay y = Lð Þ = h2 T y = Lð Þ−T2
� �

at y = L ð5cÞ

where ρ is the density, cp the specific heat, h the convective coefficient,
k the thermal conductivity of the fluid, υ the kinematic viscosity, μ the
dynamic viscosity, K the gyroviscosity, γ the material constant, j the
microinertia, σ the electrical conductivity of the fluid and T0 is the
temperature in hydrostatic state. Q=γ0 v0 (T−T0) is the volumetric

Nomenclature

B dimensionless micropolar parameter,ce:section>j/L2

Bi Biot number
C dimensionless micropolar parameter, L2/(1+Λ)
C capacitor, F
cp specific heat, J kg−1 K−1

h heat transfer coefficient, Wm−2 K−1

Ha Hartmann number, H0 (σ/μ)1/2

H0 magnetic field intensity, We m−2

j micro-inertia density, m2

k thermal conductivity, W m−1 K−1

K rotational viscosity coefficient, kg s−1 m−1

n angular velocity, rad s−1

N dimensionless angular velocity, n ρ g β L3 υ n/k
g acceleration due to gravity, m s−2

G control-voltage current-source
J electrical intensity, A
L thickness of the channel, m
Pr Prandtl number, υ/α
Q heat generation or absorption, W m−3 K−1

R resistor, Ω
Re Reynolds number, v0 ρ L/μ
t time, s
T temperature, K
T0 temperature in hydrostatic state, K
u velocity in x-direction, m s−1

U dimensionless velocity, u ρ g β L2/k
v velocity in y-direction, m s−1

v0 suction/injection velocity, m s−1

x axial co-ordinate, m
y perpendicular co-ordinate, m
Y dimensionless co-ordinate, y/L

Greek symbols
Φ voltage, V
α thermal diffusivity, m2 s−1

β volumetric coefficient of thermal expansion, K−1

γ microrotational coupling coefficient, N s
ΔY thickness of the cell
ε non-dimensional heating parameter, (T2−T0)/(T1−T0)
ζ dimensionless group, Pr Gr β g L/cp
θ dimensionless temperature, (T−T0) ρ2 g2 β2 L4/k μ
λ dimensionless micropolar parameter, γ/μ L2

γ1 dimensionless micropolar parameter, γ0 L/ρ cp
Λ dimensionless micropolar parameter, K/μ
μ dynamic viscosity, N s m−2

ρ density, kg m−3

σ electrical conductivity, Ω−1 m−1

τ dimensionless time, t υ/L2

υ kinematic viscosity, m2 s−1

Subscripts
j, j−Δ, j+Δ associated to the centre, left and right position on

the cell
w condition at the wall
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