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The analytical solution of a boundary-value heat conduction problem of friction for the tribosystem
consisting of a semi-infinite foundation and a plane-parallel strip sliding over its surface is obtained. The
evolution of temperature and its distribution in depth from a contact surface for materials of frictional
couple, such as aluminum-steel, is studied.
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1. Introduction

The heat conduction problems of friction are nowadays formu-
lated in two variants. In the first one, the elements of friction couple
are considered separately and the heat flow intensities are set on each
of the contact surfaces in such a way that their sum equals the specific
power of friction [1–5]. For this purpose, the heat participation factor
is introduced which is found experimentally or by empirical formulas
[6–8]. It is the statement that gives the solution of the heat
conduction problem of friction for the foundation with a composite
strip [9,10] and the heat conduction problem for the braking of a
massive body coated with either a homogeneous [11] or a composite
[12] strip. The thermoelastic state resulted from the heating of the
piecewise-homogeneous body consisting of a semi-infinite founda-
tion and a strip by the heat pulse of a finite duration is studied in
article [13].

Another variant of the statement of heat conduction problems of
friction is based on the simultaneous solution of the heat
conduction equations for both friction elements followed by the
determination of the heat flows intensities on their heating [14–18].
In such statement the problems of transient frictional heating in
cold rolling of metals [19], the heat transfer in friction welding of
cylindrical rods with different diameters [20] and the fast-moving
heating on the external surface of the ring due to friction of two
rotating pins [21] were analyzed. The analytical solution of a
boundary-value problem of heat conduction for tribosystem,
consisting of the homogeneous semi-space, sliding uniformly on a

surface of the strip deposited on a semi-infinite substrate, was
obtained in paper [22].

The aim of the study is to obtain the solution of the transient
problem of heat conduction for the tribosystem, consisting of a strip
sliding over the surface of a semi-infinite foundation at a constant
velocity.

2. Statement of the problem

The problem of contact interaction of a plane-parallel strip and
semi-infinite foundation (the semi-space) is considered. It is
supposed, that the constant compressive pressures p0 in the direction
of the z-axis of the Cartesian system of coordinates Oxyz are applied
to the upper surface of a strip and to the infinity in semi-space (Fig. 1).
The strip slides with the constant velocity V in the direction of the y-
axis on the semi-space surface. Due to friction the heat is generated
on a contact plane z=0. The sum of the intensities of the frictional
heat fluxes directed into each component of friction pair is equal to
the specific friction power q0= fVp0 [15]. Contacting surfaces of a strip
and the foundation are smooth. Therefore, the contact temperatures
of a strip and foundations are equal. The strip surface z=d is under
condition of convective heat exchange with the surrounding. Let us
find the distribution of temperature fields in the strip and in
foundation. Further, all values and the parameters concerning a
strip and foundation will have bottom indexes “s” and “f ”,
respectively.

The transient temperature fields in the strip Ts(z,t) and in the
foundation Tf (z,t) can be found from the solution of the heat
conduction problem of friction:

A2Ts z; tð Þ
Az2

=
1
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ATs z; tð Þ
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; 0< z< d; t > 0; ð1Þ
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z = 0+
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Tf 0; tð Þ = Ts 0; tð Þ; t > 0; ð4Þ
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z = d
+ hsTs d; tð Þ = 0; t > 0; ð5Þ

Tf z; tð ÞY0; zY−∞; t > 0; ð6Þ

Ts z;0ð Þ = 0; 0 ≤ z ≤ d; Tf z;0ð Þ = 0; −∞< z ≤ 0: ð7Þ
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Taking above expressions (8) into account, the boundary-value
problemof heat conduction Eqs. (1)–(7) canbewritten down in the form
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; 0< ζ< 1; τ > 0; ð9Þ
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3. Solution of the problem

By applying the Laplace integral transform to the Eqs. (9)–(15) with
respect to the dimensionless time τ [23]
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we obtain
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The solutions of the ordinary differential Eqs. (17) and (18) at
boundary conditions (19)–(22) have the form:
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Nomenclature

d Thickness of the strip
erf(x) Gauss error function
erfc(x)=1−erf(x) Complementary error function
ierfc(x)=π1/2exp(−x2)−x erfc(x) Integral of the error

function erfc(x)
f Frictional coefficient
hs Heat transfer coefficient
K Thermal conductivity
k Thermal diffusivity
p0 Pressure
q0= fVp0 Specific friction power
T Temperature
T0=q0d /Ks Temperature scaling factor
T⁎=T /T0 Dimensionless temperature
t Time
V Sliding velocity
z Spatial coordinate

Greek symbols
Bis=hsd /Ks Biot's number
τ=kst /d2 Fourier's number
ζ=z /d Dimensionless spatial coordinate

Indexes
f Foundation
s Strip
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