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Abstract

This paper presents an analytical solution of one-dimensional transient molecular-motor-assisted transport equations that describe
transport of adenoviruses in a spherical cell. The model of intracellular trafficking of adenoviruses is based on molecular-motor-assisted
transport equations suggested by Smith and Simmons [D.A. Smith, R.M. Simmons, Models of motor-assisted transport of intracellular
particles, Biophysical Journal 80 (2001) 45–68.]. These equations are presented in spherical coordinates and extended by accounting for
the random component ofmotion of viral particles bound to filaments. This random component is associatedwith the stochastic nature of
molecular motors responsible for the locomotion of viral particles bound to filaments. Utilizing the method of separation of variables, a
generalized Fourier series solution for this problem is obtained. The solution uses two different orthogonal sets of eigenfunctions to
represent the concentration of free viral particles transported by diffusion and the concentration of microtubule-bound viral particles
transported by kinesin-family molecular motors away from the cell nucleus. Binding/detachment kinetic processes between the viral
particles and microtubules are specified by first rate reaction constants; these lead to coupling between the two viral concentrations. The
obtained solution simulates viral transport between the cell membrane and cell nucleus during initial stages of viral infection.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

During infection, some DNA viruses utilize the cell's own molecular-motor-assisted microtubule (MT)-based
transport mechanism to deliver viral DNA to the nucleus of a target cell, where they use cellular reproductive
machinery to replicate themselves (Leopold and Pfister [2], Mabit et al. [3], Alberts et al. [4]). A recent paper by Dinh
et al. [5] presents a comprehensive numerical model of intracellular trafficking of adenoviruses; the model is based on
equations governing molecular-motor-assisted transport of intracellular particles developed in Smith and Simmons [1].
According to this model, a fraction of intracellular space is occupied by filaments (such as microtubules or actin
cables); the remaining space allows for diffusion of unbound particles.
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Microtubules radiate out in all directions from the centrosome (the cell center) where their minus-ends are anchored.
Different kinds of intracellular particles (such as transport vesicles loaded with specific proteins, intracellular vesicles
carrying different types of cargo between intracellular compartments, or viral particles) are carried away from the cell
center toward the cell membrane by kinesin-family molecular motors (this family of molecular motors is responsible
for the transport on microtubules toward their plus-ends). Intracellular organelles are also carried from the cell
membrane toward the cell center by dynein-family molecular motors (this family of molecular motors is responsible for
the transport on microtubules toward their minus-ends) (Alberts et al. [4], Pollard and Earnshaw [6]).

Unbound (free) viruses may bind to filaments; viruses bound to filaments may detach from them; the binding/
detachment kinetic processes are specified by the first rate constants. Dinh et al. [7] and Pangarkar et al. [8] applied the
developed model to investigating spatial patterns of intracellular particles. Other aspects of intracellular transport of
cell organelles and vesicles along microtubules were considered in Friedman and Craciun [9] and Welte [10]. Recently,
Kuznetsov [11] obtained an analytical solution of Smith–Simmons equations through generalized Fourier series using
a set of non-orthogonal eigenfunctions.

Dinh et al. [5] solved molecular-motor-assisted transport equations in a cylindrical coordinate system, assuming
elongated cells. This paper presents a formulation of the molecular-motor-assisted transport equations in a spherical
coordinate system, assuming a spherically symmetric cell. Modeling is carried out under the assumption that
molecular-motor-assisted transport of viral particles is only powered by kinesin-family molecular motors and occurs
toward microtubules plus-ends, from cell nucleus to cell membrane. Molecular-motor-assisted transport of viral
particles powered by dynein-family molecular motors (from cell membrane to cell nucleus) is neglected in this paper.

Nomenclature

D0 dimensionless diffusivity of a free viral particle D̃0 k̃þ= ṽ
2
þ

D̃0 diffusivity of a free viral particle
D+ dimensionless diffusivity of MT-bound viral particles, D̃þ k̃þ= ṽ

2
þ

D̃þ diffusivity of MT-bound viral particles
k̃þ first order rate constant for binding of viral particles to microtubules
k Vþ dimensionless detachment rate constant of viral particles from microtubules, k̃ Vþ=k̃þ
k̃ Vþ first order rate constant for detachment of viral particles from microtubules
n0 dimensionless free viral particles concentration ñ0 ṽ

3
þ=k̃

3

þ
ñ0 free viral particles concentration
n+ dimensionless concentration of viruses moving on microtubules, ñþ ṽ

3
þ=k̃

3

þ
ñ+ concentration of viruses moving on microtubules
NC dimensionless concentration of viruses at the cell membrane, ÑC ṽ

3
þ=k̃

3

þ
ÑC concentration of viruses at the cell membrane
NN dimensionless concentration of viruses at the nucleus membrane, ÑN ṽ

3
þ=k̃

3

þ
ÑN concentration of viruses at the nucleus membrane
r̃ radial coordinate
r dimensionless radial coordinate, r̃ k̃þ= ṽþ
R̃C cell radius
RC dimensionless cell radius, R̃C k̃þ=ṽþ
R̃N radius of cell nucleus
RN dimensionless radius of cell nucleus, R̃N k̃þ= ṽþ
t dimensionless time, t̃ k̃þ
t̃ time
ṽþ velocity of a viral particle moving on a microtubule

Greek symbols
σN degree of loading at the nucleus membrane
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