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a b s t r a c t 

In the current work the lattice Boltzmann method (LBM) is applied to investigate heat transfer phenom- 

ena in particulate flows. Different cases involving both two- and three-dimensional configurations are 

studied. For the fluid–particle interactions the direct-forcing and direct-heating immersed boundary (IB) 

method are applied to calculate the hydrodynamic force and energy exchange between the particle and 

the fluid, respectively. This Eulerian–Lagrangian approach captures the fluid flow around the particles 

with high accuracy. The Boussinesq approximation is applied to the coupling between flow and tem- 

perature fields. The energy equation is solved using a double-population model in the LBM framework. 

Numerical simulations reveal that this thermal IB-LBM can accurately predict the particle motion. A par- 

ticularly interesting case involves particles with a variable temperature, where the competition between 

gravity and buoyancy induced by the temperature gradient can make particles sink or rise. It is observed 

that cold particles settle down faster than hot particles. Also, the thermal IB-LBM has been implemented 

for a collection of spherical particles. In this manner, the behavior of catalyst particles can be accurately 

predicted, as demonstrated in the last application, involving 60 particles interacting in an enclosure. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Particulate flows are present in many natural and industrial ap- 

plications such as filtration, pollution control, blood clogging, flu- 

idized bed reactors, crystallization, or chemical reactors involving 

catalyst particles. For many years, the study and design of parti- 

cle systems were confined to empirical and experimental research. 

During the past decades and as a result of increased computational 

capability and advanced modeling techniques, the numerical anal- 

ysis of particulate flows has attracted the attention of many re- 

search groups. Three major numerical approaches can be identified 

in this regard. The first approach is the two-fluid model (as spe- 

cial case of the multi-fluid model) in which the properties of the 

particles are assumed to be continuous, like those of a pure fluid. 

Thus, conservation equations of mass, momentum and energy are 

developed through an averaging process and the constitutive rela- 

tions for the solid phase are usually closed using the kinetic theory 

of granular flow. These equations are discretized at each computa- 

tional node and solved through a procedure similar to that used 

for the fluid ( Crowe et al., 2011; Chen and Wang, 2014 ). The in- 

teraction between the two phases is described by drag force cor- 
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relations. This model is an Eulerian–Eulerian approach that does 

not properly model all details of particle–particle and particle–

fluid interactions. The second model is the discrete particle model 

(DPM) and its extension, the discrete element model (DEM). In 

this model each particle is treated as a point force and its posi- 

tion is determined via Newton’s equations of motion. This model 

is an Eulerian–Lagrangian approach and estimates the force acting 

on each particle by an empirical drag force. The third approach is 

the so called direct numerical simulation (DNS), which is the most 

accurate method. Here, the Eulerian grid is typically an order of 

magnitude smaller than the size of the particles, so that the fluid 

flow behavior between the particles is also computed. In this case, 

no correlation is required and both particle–particle and particle–

fluid interactions can be modeled in a realistic way ( Van der Hoef 

et al., 2008 ). However, collisions still require approximate models 

in general. 

The DNS methods falls into two categories: boundary-fitted and 

non-boundary fitted. In the boundary-fitted techniques the gener- 

ated computational grid fits the particle surface. This type of mesh 

is usually unstructured for complex surface geometries. This im- 

plies that mesh generation is computationally expensive and trou- 

blesome, especially when treating moving objects. The arbitrary 

Lagrangian–Eulerian (ALE) approach ( Hu et al., 2001 ) locates in 

this group. This method loses its efficiency in case of 3D or in 
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presence of numerous particles. Non-boundary fitted approaches 

are then easier to implement. The two main methods in this cat- 

egory are: the distributed Lagrange multiplier or fictitious domain 

method (DLM/FDM, see Glowinski et al., 1999 ) and the immersed 

boundary method (IBM). In this work, the latter approach is im- 

plemented. IBM was first introduced by Peskin (1977) in order to 

model the blood flow in the heart. In IBM, the fluid equations are 

discretized on a fixed Eulerian grid over the entire domain and the 

immersed boundary is discretized on a moving Lagrangian mesh. 

Among different approaches for the evaluation of the force term 

at each Lagrangian point in IBM the direct forcing method ( Mohd- 

Yusof, 1997; Uhlmann, 2005 ) has obtained particular attention due 

to its ease of application. 

In this paper, the lattice Boltzmann method (LBM) together 

with IBM is employed to simulate different particulate flows in- 

volving heat transfer. LBM originated from the concept of lat- 

tice gas cellular automata (LGCA). LGCA suffered from noise and 

it was not an easy task to extend it to three-dimensional (3D) 

cases. Therefore, the Boolean variable of LGCA was later replaced 

by a real-valued distribution function ( McNamara and Zanetti, 

1988 ) and the collision operator was replaced by a linear one 

( Higuera and Jimenez, 1989 ). Since then LBM has been widely ap- 

plied to the simulation of different flow configurations including 

turbulent flows ( Lammers et al., 2006 ), heat transfer ( Mohamad 

and Kuzmin, 2010 ), nano-fluids ( Nemati et al., 2010 ), blood flow 

( Krüger et al., 2013 ), to cite only a few. In LBM the fluid is consid- 

ered as a set of fictitious particles. These particles that describe 

the fluid are allowed to move between lattice nodes or stay at 

rest. LBM has basically two steps: first, the collision of particles, 

which controls the relaxation toward equilibrium; and in the sec- 

ond step, the streaming of particles in which distribution func- 

tions are shifted to the neighboring lattice cells. The macroscopic 

flow properties such as density, velocity, and pressure can be re- 

trieved from the collective behavior of the microscopic states of 

the particles including their location and velocity. Efficient paral- 

lelization, high computational efficiency and the absence of any el- 

liptic Poisson equation for pressure made LBM increasingly popu- 

lar. It has later been applied to the simulation of flow around par- 

ticles using a bounce-back boundary condition ( Ladd, 1994 ). Feng 

and Michaelides (2004) combined IBM and LBM and successfully 

simulated the sedimentation of a large number of particles in an 

enclosure. Finally, a direct-forcing based IB-LBM was proposed that 

overcame the drawbacks of the bounce-back method and was eas- 

ier to implement ( Feng and Michaelides, 2005; Dupuis et al., 2008 ). 

The numerical simulation of particulate flows is already quite 

complex. This complexity increases even further when heat trans- 

fer must be taken into account. Although there has been increasing 

interest for corresponding studies in recent years, only few publi- 

cations can be found. Gan et al. (2003) used the ALE-finite element 

method to model the motion of particles having heat transfer with 

surrounding fluid; however, this method was computationally ex- 

pensive. Yu et al. (2006) extended the DLM/FDM to simulate two 

dimensional (2D) particulate flows with heat transfer. They con- 

sidered particles of constant or varying temperature. Kim and Choi 

(2004) and Pacheco et al. (2005) applied IBM to the heat trans- 

fer between a fluid and stationary objects. Feng and Michaelides 

(2009) developed an IB finite-volume technique and applied this 

approach to particle-laden flows, where particles are moving. They 

verified their results by comparing them to those of Yu et al. 

(2006) . They were also able to use this approach at ρr C r = 1 ( ρr : 

particle to fluid density ratio; C r : particle to fluid specific heat 

ratio) and tackle the instability problems appearing around this 

threshold. However, they assumed a uniform temperature inside 

the particle, which is only valid for high thermal conductivities of 

the solid particle. Dan and Wachs (2010) used the DLM/FD method 

to model heat transfer problems in 3D with constant particle tem- 

perature. Kang and Hassan (2011) applied two types of thermal IB- 

LBM, a hybrid model and a simplified double-population method 

to simulate heat transfer between particles and the fluid. However, 

the simulation was limited to 2D and particles had a fixed temper- 

ature. Wachs (2011) studied the rising of 3D catalyst particles using 

a parallelized DNS-IB with a fictitious domain method. Deen et al. 

(2012) implemented DNS-IBM to study the heat transfer in both 

stationary beds and fluidized beds. Ström and Sasic (2013) used 

volume of fluid approach and modeled the motion of solid sta- 

tionary and moving particles in the presence of heat transfer ef- 

fects in both 2D and 3D domains. Weiwei (2014) developed a novel 

IBM under the framework of Navier–Stokes solver and applied 

it to non-isothermal flows in the presence of solid particles. Xia 

et al. (2015) modeled heat transfer from 3D moving spheres us- 

ing a ghost-cell based IBM. Recently, Zhang et al. (2015) proposed 

a combined thermal LBM–IBM–DEM and simulated heat transfer 

between single and multiple particles with carrier fluid. 

Therefore, the combination of thermal IBM with LBM is an 

interesting topic. In this work we aim to extend this approach 

to 3D cases in which spherical particles are moving while hav- 

ing heat exchange with surrounding fluid flow; the issue that has 

not been addressed by the above mentioned articles. The case 

of variable particle temperature will be studied as well; both in 

two- and three dimensional simulations. For this purpose, a force 

density and an energy density term are introduced into the LBM 

equations. These force and energy terms are evaluated through a 

direct-forcing and direct-heating IBM, respectively. The developed 

methodology has been implemented in the in-house LB software 

ALBORZ, described in Eshghinejadfard et al. (2016) . 

2. Model formulation 

2.1. Thermal LBM 

The LBM, which is a particle-based approach for solving fluid 

mechanics problems, was first proposed in the 1980s. It describes 

the evolution of a discretized particle distribution function, f ( x , t, 

ξ ), which represents the probability of finding a fluid particle with 

a certain velocity ξ at a certain location x and time t . In this 

method we do not need to solve directly the equations correspond- 

ing to macroscopic variables like velocity or pressure. Instead, the 

LBM operates at a mesoscopic level via the distribution functions f , 

which are simply summed up to obtain the macroscopic dynamics. 

A discretization of the Boltzmann equation in time and space, 

and the conversion of the space of velocities { ξ } into a finite set 

of velocities { c i } within which the particles are allowed to move in 

the lattice, leads to the well-known lattice BGK model ( Bhatnagar 

et al., 1954 ): 

f i ( x + c i �t , t + �t ) − f i (x , t ) = − 1 

τ f 

[
f i (x , t) − f (eq ) 

i 
(x , t) 

]
, (1) 

where f i is the distribution function of particles moving with speed 

c i and the right-hand side accounts for the single relaxation time 

(SRT) collision term. Here, τ f is the dimensionless relaxation time 

and �t is the time step. The equilibrium distribution function 

f 
(eq ) 
i 

(x , t) is obtained by using the Taylor series expansion of the 

Maxwell–Boltzmann distribution function with fluid density ρ f and 

velocity u up to second order. It can be defined as: 

f eq 
i 

= ω i ρ f 

[
1 + 

c i · u 

c 2 s 

+ 

( c i · u ) 
2 

2 c 4 s 

− | u | 2 
2 c 2 s 

]
, (2) 

where ω i is the weight associated with the velocity c i , and the 

sound speed c s is model-dependent and equal to �x/ ( 
√ 

3 �t) . 

In the present work, for the 2D and 3D flows, the nine-velocity 

(D2Q9) and nineteen-velocity models (D3Q19) are applied, re- 

spectively. In case of 2D simulations the D2Q9 model has the 
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