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a b s t r a c t

The problem of suppressing flow oscillations in a thermocapillary flow is addressed using a
gradient-based control strategy. The physical problem addressed is the ‘‘open boat’’ process of crystal
growth, the flow in which is driven by thermocapillary and buoyancy effects. The problem is modeled
by the two-dimensional unsteady incompressible Navier–Stokes and energy equations under the
Boussinesq approximation. The goal of the control is to suppress flow oscillations which arise when
the driving forces are such that the flow becomes unsteady. The control is a spatially and temporally
varying temperature gradient boundary condition at the free surface. The control which minimizes the
flow oscillations is found using a conjugate gradient method, where the gradient of the objective function
with respect to the control variables is obtained from solving a set of adjoint equations. The issue of
choosing an objective function that can be both optimized in a computationally efficient manner and
optimization of which provides control that damps the flow oscillations is investigated. Almost complete
suppression of the flow oscillations is obtained for certain choices of the objective function.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

One goal behind mathematical or experimental modeling of
fluid and heat transfer problems is the design or control of engi-
neering systems. Such design or control inherently carries with it
the concept of optimization, as the goal is to select control inputs
or design parameters such that the engineering system is optimal
according to a prescribed metric. Optimization of engineering sys-
tems does not require a mathematical model of the system, how-
ever, the existence of such a model can greatly aid optimization
in two ways. One way is a much shorter time with which a solution
satisfying the mathematical model can often be obtained com-
pared to that required to carry out experiments. The other is that
a mathematical model potentially can contain information such
as derivatives and sensitivities with respect to the quantities being
varied that are very difficult, if not practically impossible, to obtain
from experiments. The numerical methods used in the area of
Computational Fluid Dynamics to obtain approximate solutions
to mathematical models such as the Navier–Stokes and energy
equations and computing resources have advanced to a stage
where many fluid and heat-transfer problems of engineering inter-
est may be reliably solved quickly enough that they can be used in
all stages of the design cycle. This has enabled Computational Fluid

Dynamics to replace expensive physical prototype models and has
greatly reduced design cost and time. This corresponds to the first
way that mathematical modeling can aid optimization, in which
the mathematical model is used as a ‘‘drop in’’ replacement for
experimental models. A more efficient means of using a mathemat-
ical model is its combination with an optimization method which
uses higher order information about the physical system such as
derivatives that can be obtained from the mathematical model.

A field with a high demand of optimization is crystal growth. A
major problem in crystal-growth processes with a free surface is
the appearance of microscopic striations which are the results of
impurity segregation. The striations arise due to unsteadiness in
the growth process at the crystallization front which can arise from
temperature fluctuations in the molten material (Müller and
Ostrogorsky, 1994). Flow and temperature fluctuations, despite
time-independent boundary conditions, are typically due to insta-
bilities of the flow which is driven by thermocapillary and buoy-
ancy forces which cannot be avoided. Thermocapillary surface
forces arise along the interface (free surface) between the molten
material and the surrounding atmosphere due to the thermocapil-
lary effect which is caused by the dependence of the surface ten-
sion on temperature (Kuhlmann, 1999).

The goal of the present work is to investigate issues involved
with combining a mathematical model of the unsteady Navier–
Stokes and energy equations with an optimization method with
the aim of controlling a thermocapillary flow including the
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temperature field that is a model of a manufacturing process for
crystals. The control in question is a spatially and temporally vary-
ing normal temperature gradient at the free surface of the thermo-
capillary flow. The objective is to find control that suppresses an
unsteady flow due hydrodynamic instabilities which arise for
Reynolds numbers greater than a certain critical value. The time
scales of slightly supercritical thermocapillary flows are much lar-
ger than those of high-Reynolds-number turbulent flows. This
makes them an ideal target for real-time control, since the time
available to carry out the computations needed to find optimal
control over some period of time will be substantially smaller than
the real (wall clock) time available to carry out the computations.
Note, however, that real crystal growth is much more complicated
than the model flow studied here (se e.g. Hurle, 1994). Therefore,
our study of a very much simplified model flow can only be a first
step towards a real industrial application.

A literature review concerning the combination of optimiza-
tion/control with Computational Fluid Dynamics in general exists
in Muldoon (2013). To avoid repetition, we briefly mention here
only the work on thermocapillary flows. Thermocapillary systems
that have been the subject of investigation of flow control are ther-
mocapillary liquid layers (as a model for the open-boat technique)
and thermocapillary half-zones (as a model for the floating-zone
technique). Benz et al. (1998) measured the free-surface tempera-
ture variation caused by flow oscillations in thermocapillary liquid
layers. They have experimentally proven the feasibility of sup-
pressing these oscillations by heating the free surface along lines
parallel to the isolines of constant phase of the oscillations. In a
series of papers Shiomi and co-workers have experimentally
demonstrated the feasibility of feedback control of thermocapillary
flows by suppression of oscillations in an annular pool resembling
the Czochralski process (Shiomi et al., 2001; Shiomi and Amberg,
2002) and in the half zone-model model of the floating-zone tech-
nique (Shiomi et al., 2003). In all experiments temperature signals
were recorded from two sampling points on the free surface and
the control was applied by point heating the free surface at one
or two other points. For the annular pool, Shiomi and Amberg
(2005) confirmed their experimental results by simulating some
representative cases.

In the present work we consider the control of the
two-dimensional thermocapillary flow in an open boat. In contrast
to previous investigations we make use of the full information pro-
vided by the free surface temperature and control is applied at the
whole free surface. In a work closely related to the present work
Muldoon (2013) demonstrated control of flow oscillations in this
geometry. The mathematical model, the two-dimensional
unsteady incompressible Navier–Stokes equations and energy
equations, was the same as in the present work. It was found that
the length of the ‘‘event horizon’’ (i.e., the distance ahead in time
over which optimal control was found), played a significant role

in the success of finding control that suppressed the flow oscilla-
tions. The present work represents a continuation of Muldoon
(2013) focusing on investigation of different objective functions
and issues involved with solving the optimization problems
required to determine the optimal control.

The present work uses a conjugate-gradient algorithm to find
optimal control. Such a method requires the gradient of the objec-
tive function to be minimized with respect to the control input.
Therefore, a key issue is the means by which this gradient is
obtained. In the present work this gradient is obtained by solving
an additional set of adjoint equations derived from the governing
mathematical model. Aside from gradient-based optimization
methods, there exist methods such as simulated annealing and
genetic algorithms that do not require a gradient (Davis, 1987).
Such methods are very useful if the gradient of the objective func-
tion cannot be obtained or does not exist, but since they lack the
information about the function being minimized contained in the
gradient, they typically require many more evaluations of the
objective function than gradient-based methods. This represents
a serious disadvantage for the solution of the mathematical prob-
lem considered in the present work, which, as it involves solving
the unsteady Navier–Stokes and energy equations over time peri-
ods of significant length, is extremely expensive to compute. In
the present work, the computational expense in terms of arith-
metical operations required for computing the gradient by means
of solving the adjoint equations is similar to that required to com-
pute the objective function. For this reason, a gradient-based opti-
mization method is a more efficient approach for optimization for
the present problem.

2. Formulation of the problem

A schematic with dimensions and boundary conditions of the
physical system to be investigated is given in Fig. 1. This system
is known as an ‘‘open boat’’ in the literature. The problem contains
a free surface, at which, due to gradients in the surface tension

Nomenclature

a distance along line in search direction
C aspect ratio, horizontal over vertical distance
/ control variables
/max /minð Þ maximum (minimum) value of the control variables
X the spatial computational domain
@X the boundary of X
@Xfs the part of @X containing the free surface, @Xfs # @X
H objective function used by the minimizer
Hp penalty part of objective function
h vertical distance
p pressure

T temperature
t time
tEH event horizon length
tA temporal advancement length, the extent of the tempo-

ral dimension of /; tA 6 tEH

u velocity vector
u first component of velocity vector (i.e., u1)
v second component of velocity vector (i.e., u2)
x spatial coordinate in horizontal direction
y spatial coordinate in vertical direction

Fig. 1. Schematic of physical domain for the minimization problem showing
boundary conditions and dimensions.
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