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a b s t r a c t

The paper is focused on the study of fully turbulent channel flows, using Large Eddy Simulations (LES), in
order to address the effects of adverse pressure gradient regions. Analyses of the effects of streak insta-
bilities, which have been shown to be relevant in such regions, are extended to moderate Reynolds num-
bers. The work considers two different channel geometries in order to further separate influences from
wall curvature, flow separation and adverse pressure gradients. Turbulent kinetic energy and Reynolds
stress budgets are investigated at separation and re-attachment points. The numerical approach used
in the present work is based on the incompressible Navier–Stokes equations, which are solved by a
pseudo-spectral methodology for structured grids. Wall-resolved LES calculations are performed using
the WALE subgrid scale model. The study shows that the streak instability mechanism persists at higher
Reynolds numbers with and without wall curvature in the adverse pressure gradient regions. Moreover,
the observed effects are also present regardless of the existence of flow separation regions. Finally, the
study of turbulent kinetic energy budgets indicates that, independently of the flow condition, there are
well-defined patterns for such turbulent properties at separation and re-attachment points.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

Turbulence is observed in several flows present in nature and in
industrial applications. It is characterized by a large disparity of
spatial and temporal scales. In order to accurately resolve these
scales, direct numerical simulation (DNS) and Large Eddy
Simulation (LES) have been used to study the physical phenomena
associated with transition and turbulence. DNS resolves all ranges
of scales in a turbulent flow. In LES, the larger scales, which are
mostly affected by the topology of the flow, are effectively
resolved. The high wavenumber turbulent scales are modeled by
a subgrid model, since these smaller scales are less energetic and
their statistics have a more universal character. One should expect
lower requirements in terms of mesh resolution and time step
restrictions in LES calculations, once the small turbulent scales
are modeled. Therefore, LES has lower computational costs, when
compared to DNS, although it is still able to capture the main
unsteady features in turbulent flows.

In industrial applications, the accurate prediction of separation
and re-attachment points in turbulent flows is an important factor
in the design of aircraft and turbo-machinery. Adverse pressure
gradient (APG) regions change the shear stress distributions and
this can often impact the dynamics of the flow, leading to separa-
tion. Currently, the application of Computational Fluid Dynamics
(CFD) tools, which solve the Reynolds-averaged Navier–Stokes
(RANS) equations, is common practice in industry. However,
RANS turbulence models are still not capable of adequately pre-
dicting the flow features in adverse pressure gradient (APG)
regions in spite of continuous improvements to such models.

The study presented by Jesus et al. (2014) indicates that
two-equation eddy-viscosity models tend to either under-predict
or over-predict flow separation. Reynolds stress transport models
show improved results, especially with regard to the extension of
the separated flow region. Nevertheless, no RANS model is fully
accurate in skin friction calculations (Jesus et al., 2014; Jeyapaul
et al., 2013) for APG regions. The issues that prevent RANS models
from accurately predicting the flow physics along APG regions
have been associated with the inability of such models in correctly
capturing flow separation and re-attachment locations (Jeyapaul
et al., 2013; Menter et al., 2003). However, the present results sug-
gest that the behavior of the skin friction coefficient in APG regions
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of smooth bumps does not depend on flow separation. In other
words, the behavior of attached and mildly separated flows is very
similar, indicating that the prevailing physical mechanism is
mostly associated to the adverse pressure gradient condition.

In the present work, wall-resolved LES of incompressible turbu-
lent flows are presented for convergent–divergent channels with
adverse pressure gradient regions. Simulations are performed for
Reynolds numbers Res ¼ 617 and 950. The current LES results are
compared to DNS performed by Laval et al. (2012) and Marquillie
et al. (2011) for the lower Reynolds number case here investigated,
Res ¼ 617, and excellent agreement is observed. The work consid-
ers two different channel geometries in order to separate influ-
ences from wall curvature, flow separation and adverse pressure
gradients on the physical mechanisms present at such channel
flows. The effects of APG regions are evaluated through the analy-
sis of friction coefficient distributions and turbulent kinetic energy
(TKE) budgets, including the role of production, transport and dis-
sipation of turbulence. Furthermore, a discussion of the streak
bursting instability phenomenon, originally observed by
Marquillie et al. (2008), is also presented. Analyses of the effects
of streak instabilities are extended to moderate Reynolds numbers.
The study shows that the streak instability mechanism persists at
higher Reynolds numbers and regardless of the existence of flow
separation regions. Finally, turbulent kinetic energy and Reynolds
stress budgets are investigated at separation and re-attachment
points. Such study indicates that, independently of the flow condi-
tion, there are well-defined patterns for these turbulent properties
at separation and re-attachment points.

2. Numerical formulation

LES computations are performed using the MFLOPS3D code
(Marquillie and Ehrenstein, 2003), developed at Laboratoire de
Mécanique de Lille, in Lille, France. This is a semi-spectral code
developed for the study of boundary layers and channel flows with
non-regular cross sections. The code has been used for computa-
tions of laminar flow instabilities (Marquillie and Ehrenstein,
2003) and DNS of turbulent channel flows around
two-dimensional bumps (Marquillie et al., 2008, 2011). The LES
formulation implemented in the code solves the dimensionless fil-
tered incompressible Navier–Stokes equations, which can be writ-
ten as

Mass conservation : r �~u ¼ 0;

Momentum :
@~u
@t
þ ~u � r
� �

~u ¼ �rpþ 1
Re
r2~u�r � ssgs;

Poisson for pressure : r2p ¼ �r � ~u � r
� �

~u�r2ssgs:

ð1Þ

In the set of equations above, ~u represents the velocity vector, p is
the pressure and ssgs is the subgrid scale stress tensor. The bars,
ð Þ, indicate filtered variables and the subgrid scale tensor in indicial
notation is defined as

ssgs
ij ¼ uiuj � �ui�uj: ð2Þ

One should mention that throughout the text, the bars will be
omitted to simplify the notation. In the present paper, subgrid
scale terms are evaluated using the WALE model (Nicoud and
Ducros, 1999), which is adequate for wall bounded flow computa-
tions as it was conceived to recover the correct eddy-viscosity
near-wall scaling without the need for an explicit damping. The
dimensionless quantities are given by

~x00 ¼
~x
d
; ~u ¼

~u
Uc
; t ¼ tUc

d
; p ¼

p

qU2
c

; Re ¼ dUc

m
; ð3Þ

where the underbar, ð Þ, indicates a variable with dimension, d is the
half height of the channel and Uc is the mean velocity at the inlet
centerline. For the configurations of interest in the present paper,
x00 represents the streamwise direction, y00 is the transversal direc-
tion and z00 is the spanwise coordinate. It is further convenient, for
the purpose of implementing the numerical methodology, to nor-
malize the spatial coordinates as indicated in Appendix A.

The MFLOPS3D code performs a coordinate transformation
along the y direction to allow the analysis of geometries with
non-regular cross sections. The mapping coordinates are intro-
duced into the formulation by the splitting of the gradient, diver-
gent and Laplacian operators. The new operators are given by

r ¼ rg þ Gg ð4Þ

and

r2 ¼ Dg þ Lg: ð5Þ

The rg operator represents the Cartesian components of the trans-
formed gradient operator and Gg includes the terms of the gradient
operator involving the cross-section profile. Similarly, Dg contains
the Cartesian terms of the transformed Laplacian operator and Lg

groups the terms associated to the cross-section profile and its
derivatives. With the previous operators, the Navier–Stokes equa-
tions are re-written as

rg �~uþ Gg �~u ¼ 0; ð6Þ

@~u
@t
þ ~u � rg
� �

~uþ ~u � Gg
� �

~u ¼ �rgp� Ggpþ 1
Re

Dg~uþ
1
Re

Lg~u

�rg � ssgs � Gg � ssgs; ð7Þ

Dgpþ Lgp ¼ Jðu;v ;wÞ � r � rg � ssgs � Gg � ssgs
� �

: ð8Þ

In the above equations, Jðu; v;wÞ includes the effects of all nonlinear
terms appearing in the transformed equations. All the details con-
cerning the mapping coordinates and transformed operators can
be found in Appendix A. Eqs. (6)–(8) are the modified mass conser-
vation, momentum and Poisson equations, which are solved as part
of the numerical procedure to be described in the next paragraphs.

The first derivatives in the streamwise direction are discretized
using an 8th-order centered finite difference scheme. The second
derivatives in the streamwise direction are discretized using a
4th-order centered finite difference scheme. Chebyshev polynomi-
als, collocated in Chebyshev–Lobatto points (Canuto et al., 1988),
are employed for all derivatives in the y direction. Fourier trans-
forms are performed in the spanwise direction, which is assumed
to be periodic. The conventional 3/2 rule (Canuto et al., 1988) is
employed to remove aliasing errors of the discrete Fourier trans-
form in the nonlinear terms.

Time integration is performed using an implicit 2nd-order
backward Euler method for the terms containing the Cartesian
components of the Laplacian operator. An explicit 2nd-order
Adams–Bashforth method is used for all the other terms, including
the subgrid scale tensor. Pressure–velocity coupling is achieved
by a fractional-step method which performs an iterative process.
In this process, the solution of the momentum equations
yields an intermediate velocity field, whereas the solution of the
pressure Poisson equation determines an intermediate pressure
(Karniadakis et al., 1991). Afterwards, iterations based on the con-
tinuity equation are used in order to obtain a pressure correction
that produces a divergent-free velocity field. Calculations are per-
formed in Fourier space, and each Fourier mode is solved indepen-
dently using parallel computations. The nonlinear and subgrid
tensor terms are computed in physical space. The computational
process is parallelized by mesh partition and the message passing
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