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In this paper, we present a three-dimensional pseudo-potential-based lattice Boltzmann (LB) model with
an improved forcing scheme for multiphase flows. The Chapman-Enskog multiscale analysis shows that
the proposed forcing scheme allows the lattice Boltzmann equation to recover the three-dimensional
hydrodynamical equations with additional terms that correspond to the mechanical stability condition
and surface tension. Validations of the present LB model with Maxwell construction, Laplace’s law and
oscillation dynamics demonstrate that the model enables the density ratio to be as large as 700 in static
and quasi-static cases while maintaining variable surface tension. Finally, the application of the model to
simulation of the droplet motion in a microchannel shows that the model allows the analysis of impor-
tant effects, including droplet surface tension, channel surface wettability, and channel surface
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1. Introduction

A great deal of numerical studies on multiphase flows have
been done during the past decades, and they have attracted much
attention recently because of their wide applications in micro-
fluidics devices (Cheng et al., 2014). Traditionally, multiphase
flows are simulated by solving the macroscopic Navier-Stokes
equations coupled with various approaches to track the interface
among different phases. Generally, these approaches are classified
into two categories: one is the interface-tracking approach, i.e.,
using Lagrangian approach to explicitly represent the interface,
such as the front tracking method (Unverdi and Tryggvason,
1992), while the other is the interface-capturing approach, i.e.,
using Eulerian approach to implicitly represent the interface by a
scalar function, such as the volume of fluid method (Hirt and
Nichols, 1981), the level set method (Sethian and Smereka,
2003), and the phase field method (Badalassi et al., 2003). How-
ever, simulation of multiphase flows based on the Navier-Stokes
equations remains a challenging issue as it is difficult to track com-
plex phase interfaces that physically result from microscopic inter-
actions between molecules (Sbragaglia et al., 2006).
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Alternatively, due to its kinetic nature, the lattice Boltzmann
(LB) method has proved to be a promising tool for simulating fluid
systems involving interfacial dynamics (such as multiphase flows)
and complex boundaries (such as porous media) (Chen and

Doolen, 1998). Existing LB models for multiphase flows can be
generally classified into four categories: the color-gradient model
(Gunstensen et al., 1991; Grunau et al., 1993), the pseudo-
potential model (Shan and Chen, 1993; Shan and Chen, 1994),
the free-energy model (Swift et al., 1995; Swift et al., 1996), and
the kinetic-theory-based model (He et al., 1998; He and Doolen,
2002). Among those models, the pseudo-potential model, which
is also called Shan-Chen model, has received much attention, pri-
marily because interfaces can naturally arise, deform, and migrate,
thereby improving the computational efficiency (Chen et al., 2014;
Succi, 2015). Specifically, the fluid interactions are described by an
artificial inter-particle potential and the phase separation is natu-
rally achieved by imposing a short-range attraction among differ-
ent phases. However, there are two issues associated with the
pseudo-potential model proposed by Shan and Chen (1993,
1994). One is that this model is applicable to low-density-ratio
interfacial problems only (Yuan and Schaefer, 2006), while the
other is that in this model surface tension cannot be varied inde-
pendently of the density ratio (Sbragaglia et al., 2007). Over the
past years, efforts have been made to address these issues (Yuan
and Schaefer, 2006; Sbragaglia et al.,, 2007; Shan, 2006; Huang
et al, 2011; Li et al,, 2012; Li et al,, 2013; Li and Luo, 2013). For
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instance, one of previous efforts is to incorporate the fluid interac-
tion force into the pseudo-potential model via improving the
forcing scheme (Huang et al., 2011; Li et al., 2012; Li et al., 2013;
Li and Luo, 2013). Li et al. (2013) proposed a forcing scheme for
a two-dimensional (2D) multiple-relaxation-time (MRT) pseudo-
potential LB model. This forcing scheme can adjust the mechanical
stability condition so that multiphase flows with a large density
ratio can be simulated. In addition, Li and Luo (2013) also proposed
to adjust the surface tension in the 2D MRT pseudo-potential LB
model by incorporating a source term of the LB equation, which
is based on the derivation of discrete form pressure tensor. As a
practical numerical tool for simulating engineering problems,
however, it is desirable to extend 2D models to three-
dimensional (3D) models to truly reflect the real-world multiphase
flow behaviors. However, as the underlying lattice structure for 2D
and 3D models are different, there are significant differences in the
development and implementation of 3D MRT models (Premnath
and Abraham, 2007).

In this work, we extend the 2D forcing scheme proposed by Li
et al. (2013) and Li and Luo (2013) to 3D MRT pseudo-potential
LB model for single-component multiphase flows with a large
density ratio and variable surface tension. The rest of the paper
is organized as follows: In Section 2, we present the pseudo-
potential LB model and give the new forcing scheme, followed by
the Chapman-Enskog analysis to derive macroscopic equations.
In Section 3, the present multiphase LB model is evaluated by ver-
ifying Maxwell construction, Laplace’s law, spurious velocities,
spatial accuracy, oscillation dynamics and contact angle, respec-
tively. After that, numerical simulations are carried out to study
liquid droplets moving in a 3D microchannel, including the effects
of droplet surface tension, channel surface wettability, and channel
surface roughness.

2. Numerical method
2.1. Two-phase lattice Boltzmann method

2.1.1. The multiple-relaxation-time LB model
The evolution equation of LB model can be written as

filx+eid t+0r) — fi(X, £) = Qi + ocF; (1)

where f; is the density distribution function, t is the time, X is par-
ticle position, e; is the discrete velocity along the ith direction, &; is
the time step, F; is the forcing term in velocity space, ¢ is the
collision operator which can be expressed by either Bhatnagar-Gr
oss—Krook (BGK) collision operator (Qian et al., 1992) or multiple-
relaxation-time (MRT) collision operator (Lallemand and Luo,
2000; d’Humieéres, 2002). In this work, we adopt MRT collision
operator for its superior numerical stability over BGK
collision operator in simulating both single and multiphase flow
(Premnath and Abraham, 2007; Lallemand and Luo, 2000;
d’Humiéres, 2002; Chai and Zhao, 2012). The MRT collision operator
Q; is defined as

Q = —(M'SM), (%, 6) — £V (%, 1) (2)

For the D3Q15 lattice model, e; can be given as
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where ¢ = d,/6; is lattice constant. M is orthogonal transformation
matrix, given by d’Humiéres (2002)
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and S is a relaxation matrix. To keep the relaxation matrix S

consistent with the moment, we write it as S = diag(s,,S., S,
S, S5 S Sqs Sj» Sqs Svs Sv, Sy, Sy Sy, Sxyz)-

The density distribution function f; and its equilibrium distribu-

tion f;e‘” can be projected onto moment space via m = Mf and

m©® = Mf®?, respectively. Thus, the evolution equation of density
distribution function can be rewritten as

m =m-—S(m— meqwat(l §>MF (5)
where I is the unit tensor and MF is the forcing term in the moment

space with (I — 0.5S)MF = MF, the equilibrium m®© is given by

7
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7 T
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where u,, u, and u, denote the fluid velocity components in the
(x,y,2) Cartesian coordinate system, and |u® = u2 + u 4 u.
The macroscopic density p and velocity u are obtained from

p=Yfi pu=Yef+F )

where F = (F, F,,F,) is the total force acting on the system.
2.1.2. Pseudo-potential model

For single-component multiphase flows, the interaction force
mimicking molecular interactions, is given by Shan (2006, 2008)

N
Finc(X) = —Gy (%)Y _w(lel* )y (x +e)e; (8)
i=1

where (X) is the interaction potential, G is the interaction strength,
and w(|ej]?) are the weights. For the case of nearest-neighbor inter-
actions on D3Q15 lattice, w(1) =1/3, w(3) =1/24 and N = 14.

In the pseudo-potential model, the interaction force is usually
incorporated via a forcing scheme, which affects the numerical
accuracy and stability of the model. In this study, we extend the
forcing scheme proposed by Li et al. (2013) and Li and Luo
(2013) to D3Q15 lattice. The evolution equation of density distri-
bution function is written as

m =m-S(m-— meQ)+(>[(1 §>MF+C (9)

where the term MF and C are given by
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