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a b s t r a c t 

The purpose of this article is to test similarity laws and scaling ideas, as well as characterize turbu- 

lence behaviour of large-defect adverse-pressure gradient turbulent boundary layers using six experi- 

mental and numerical databases including a new direct numerical simulation of a strongly decelerated 

non-equilibrium turbulent boundary layer. In the latter flow, at a moderate Reynolds number, the mean 

velocity profiles depart from the classical law of the wall throughout the inner region including in the 

viscous sublayer and they do not follow the log law. However, the agreement is excellent with the ex- 

tended law of the wall that accounts for the pressure gradient for the viscous sublayer. The Reynolds 

stress components are not self-similar in the viscous sublayer when the velocity defect is important, but 

they scale reasonably well with the pressure-viscous scales. 

Detailed comparisons of the six different flows are made in the outer region. In order to do such com- 

parisons, an outer region velocity scale analogous to the commonly defined free shear layer velocity 

scales is introduced. It is found that the investigated one-point velocity statistics in the upper half of 

large-defect boundary layers resemble those of a mixing layer: mean velocity defect, Reynolds stresses, 

turbulent kinetic energy budgets, uv correlation factor and structure parameter −〈 u v 〉 / 2 k . The dominant 

peaks of turbulence production and Reynolds stresses are located roughly in the middle of the bound- 

ary layer. The profiles of the uv correlation factor reveal that u and v become less correlated throughout 

the boundary layer as the mean velocity defect increases, especially near the wall. The structure param- 

eter is low in the large-defect disequilibrium boundary layers, similar to large-defect equilibrium flows 

and mixing layers and decreases as the mean velocity defect increases. All large-velocity-defect boundary 

layers analysed are found to be less efficient in extracting turbulent energy from the mean flow than 

zero-pressure-gradient turbulent boundary layers, even throughout the outer region. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Wall-bounded turbulent flows are important to understand in 

order to improve energy efficiency for a wide range of machines 

and systems associated with these turbulent flows. An important 

sub-group of wall bounded turbulent flows are adverse pressure 

gradient (APG) turbulent boundary layer (TBL) flows. These flows 

are found for instance around surfaces with curvature, as encoun- 

tered in many aerodynamic applications such as airplane wings, 

cars and turbomachinery. Although a significant amount of re- 
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search has been devoted to understanding channel flows, pipe 

flows and zero pressure gradient (ZPG) turbulent boundary layer 

flows, which has led to a consistent theory of these canonical wall 

flows, the same cannot be said for APG TBLs. There exists nonethe- 

less a wealth of theoretical, experimental and numerical stud- 

ies on APG TBLs, many of which are summarized below. Among 

many things, these studies clearly demonstrate that the fundamen- 

tal problem in APG boundary layer flow research is the lack of 

a recognized theoretical framework and, consequently, a lack of 

well-thought laboratory and numerical experiments based on such 

a framework. A clear and agreed understanding of which parame- 

ters are paramount for the development of the APG boundary layer 

does not yet exist. An overview will be presented of the most sig- 

nificant ideas and results which are consequential to the study re- 

ported in this article. 

http://dx.doi.org/10.1016/j.ijheatfluidflow.2016.03.004 
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The velocity components of the boundary layer flow are de- 

noted by u, v, w in the respective spatial coordinates x, y, z for 

the streamwise, wall-normal and spanwise directions, respectively. 

For the sake of the discussion and to retain generality, the length 

and velocity scales of the inner and outer regions of the bound- 

ary layer are left unspecified for the moment and are denoted re- 

spectively as L i , U i and L o , U o . We will limit the discussion to two 

regions because we can neither confirm nor refute that a third, in- 

termediate region may exist for some categories of APG TBLs; the 

layer-structure and scaling of the TBL is discussed further on. 

In addition to the presence and sign of the pressure gradient, 

pressure gradient TBLs can be further distinguished with two im- 

portant characteristics of shear layers: (1) the importance of the 

mean velocity (momentum) defect and (2) the state of dynamic 

equilibrium. The mean velocity defect, U e − U(y ) , where U e is the 

external velocity at the edge of the boundary layer, reflects the lo- 

cal state of the boundary layer as a consequence of the upstream 

history of the flow. It gives an indication on the strength and distri- 

bution of mean shear rates and hence partly also on the local char- 

acteristics of momentum transfer and turbulence behaviour. In that 

respect, large-velocity-defect TBLs resulting from a strong or a pro- 

longed adverse pressure gradient are quite distinct from ZPG TBLs 

and small-defect APG TBLs. In their case, mean shear rates in the 

outer region are no longer small in comparison to their near-wall 

counterparts while near the wall, the importance of viscous forces 

and of the wall shear stress diminishes. As a result, the near-wall 

turbulent kinetic energy production peak is absent or very small 

and the main production peak is found in the outer region of the 

flow ( Elsberry et al., 20 0 0; Na and Moin, 1998; Skåre and Krogstad, 

1994 ). In the case of very large defect boundary layers, for in- 

stance near separation, turbulence activity is almost absent near 

the wall ( Elsberry et al., 20 0 0; Maciel et al., 2006b; Na and Moin, 

1998; Skåre and Krogstad, 1994; Skote and Henningson, 2002 ) es- 

sentially because mean shear is negligible there. The shape factor 

H = δ∗/θ, where δ∗ and θ are the displacement and momentum 

thicknesses respectively, and Clauser shape factor ( Clauser, 1954 ), 

that is based on similarity theory and that is not as dependent on 

Reynolds number, are possible indicators of the importance of the 

mean velocity (momentum) defect. 

The other important characteristic is the state of dynamic equi- 

librium of the boundary layer. Most real TBLs are complex because 

under the influence of external factors such as the pressure gradi- 

ent they depart from dynamic equilibrium, in the sense that there 

exists a streamwise variation of the relative importance of each 

force acting on the flow, e.g. inertia, pressure and viscous forces. 

In the traditional theory of equilibrium TBLs ( Clauser, 1954; Rotta, 

1950 ), the friction velocity u τ = 

√ 

τw 

/ρ, where τw 

is the wall shear 

stress and ρ is the density, is implicitly assumed to be the outer 

velocity scale. Maciel et al. (2006a ) have recast the theory in more 

general terms by avoiding the assumption of a priori outer scales. 

They showed that the main parameter that characterizes the im- 

pact of the pressure gradient on the outer region of all types of PG 

TBLs is a generalized form of the Rotta–Clauser’s pressure gradient 

parameter 

βo = − L o 

U o 

dU e 

dx 
. (1) 

This assumes that appropriate outer scales can be found to rep- 

resent all types of TBLs (see discussion on scales below). A pres- 

sure gradient parameter also needs to be defined for the near-wall 

region as will be done subsequently, but it suffices for the moment 

to discuss the outer one. If the pressure gradient parameter βo re- 

mains constant, then the TBL is in equilibrium or quasi-equilibrium 

in its outer region (equilibrium is not necessarily complete because 

at finite Reynolds number, a constant βo is not the only condition 

necessary for similarity as described in Maciel et al., 2006a ). In the 

case of non-equilibrium TBLs, an increase (decrease) in βo leads 

to an increase (decrease) of the mean velocity defect. Large veloc- 

ity defect and boundary layer separation can therefore be due to a 

sharp streamwise positive gradient of βo , even if they occur down- 

stream in a region where d βo / dx is no longer positive, or from a 

prolonged mild positive d βo / dx . 

Besides studies on equilibrium TBLs, such as Clauser (1954) , 

Stratford (1959) , East and Sawyer (1980) , Skåre and Krogstad 

(1994) , and Lee and Sung (2009) , there have been many studies 

in the past of TBLs subjected to favourable or adverse pressure 

gradients that lead to non-equilibrium conditions, reviewed for in- 

stance in Skote and Henningson (2002) and Maciel et al. (2006b ). 

In most of these studies, the pressure distribution was chosen 

rather arbitrarily from a theoretical viewpoint, often with a spe- 

cific practical application in mind. It therefore resulted in random 

and sometimes complex streamwise evolutions of βo whatever the 

assumed outer scales ( Maciel et al., 2006a ). It is not often recog- 

nized that the state of the boundary layer is directly attributable 

to the streamwise variation of βo (and β i ) and not simply to the 

presence of a pressure gradient. As a result, even if we have an 

overall knowledge of the main effects of the pressure gradient on 

TBLs, we do not fully understand them. Moreover, we are still un- 

able to make a clear distinction between the local effects of pres- 

sure gradient and those resulting from the upstream history on the 

non-equilibrium evolution of a TBL. 

It is also important to discuss the mean flow structure, the 

various similarity laws and the scaling of TBLs subjected to pres- 

sure gradients since there exist several interpretations and theo- 

ries. In the case of canonical wall-bounded turbulent flows and 

small-defect TBLs, a two-region structure (inner/outer) further sub- 

divided into four layers (viscous sublayer, buffer layer, overlap layer 

and defect layer) is traditionally accepted even if it is still debated 

( Klewicki, 2010; Marusic et al., 2010 ). The outer region, which in- 

cludes the overlap and defect layers, is usually considered to be 

the upper layer of the turbulent boundary layer (or pipe or chan- 

nel flow) where viscous momentum transfer is negligible with re- 

spect to turbulent momentum transfer. In the viscous sublayer, the 

classical law of the wall for the wall-normal distribution of mean 

velocity is obtained by assuming that Reynolds stresses are negli- 

gible compared to viscous shear stresses 

U 

+ = 

U 

u τ
= y + (2) 

In the overlap layer, the matching of the inner and outer ex- 

pressions for the total shear stress is usually performed in a man- 

ner that leads to the traditional log law 

U 

+ = 

1 

κ
ln y + + B (3) 

where κ is the von Karman constant. 

For large-defect TBLs, the mean momentum and turbulent en- 

ergy balances are completely different and a widely accepted layer 

representation does not exist. By using asymptotic theory, Melnik 

(1989) , Durbin and Belcher (1992) , Bush and Krishnamurthy 

(1992) and Scheichl and Kluwick (2007) have each proposed dif- 

ferent types of three-layer structures (inner/intermediate/outer). 

Other researchers, using asymptotic theory or dimensional and 

physical arguments, suggest various two-layer structures that rep- 

resent either a gradual or an abrupt shift from the canonical struc- 

ture as the velocity defect or pressure gradient increases ( Afzal, 

1983; 1996; Kader and Yaglom, 1978; Perry et al., 1966; 2002; 

Perry and Schofield, 1973; Skote and Henningson, 2002; Stratford, 

1959; Townsend, 1961 ). In all these works, equilibrium or quasi- 

equilibrium is usually assumed, together with various other as- 

sumptions. 

Some of these theories are tested in the present study. But since 

we cannot truly resolve the layer-structure issue, we use loosely 
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