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a b s t r a c t

When stagnation pressure rises in a natural or numerically simulated flow it is frequently a cause for con-

cern, as one usually expects viscosity and turbulence to cause stagnation pressure to decrease. In fact, if

stagnation pressure increases, one may suspect measurement or numerical errors. However, this need not

be the case, as the laws of nature do not require that stagnation pressure continually decreases. In order

to help clarify matters, the objective of this work is to understand the conditions under which stagnation

pressure will rise in the unsteady/steady flows of compressible, viscous, calorically perfect, ideal gases.

Furthermore, at a more practical level, the goal is to understand the conditions under which stagnation

pressure will increase in flows simulated with the Reynolds averaged Navier–Stokes equations and eddy-

viscosity turbulence models. In order to provide an improved understanding of increases in stagnation

pressure for both these scenarios, transport equations are derived that govern its behavior in the unaver-

aged and Reynolds averaged settings. These equations are utilized to precisely determine the relationship

between changes in stagnation pressure and zeroth, first, and second derivatives of fundamental flow

quantities. Furthermore, these equations are utilized to demonstrate the relationship between changes in

stagnation pressure and fundamental non-dimensional quantities that govern the conductivity, viscosity,

and compressibility of the flow. In addition, based on an analysis of the Reynolds averaged equation (for

eddy-viscosity turbulence models), it is shown that stagnation pressure is particularly likely to experi-

ence a spurious rise at the outer edges of shear layers that are undergoing convex curvature. Thereafter,

numerical experiments are performed which confirm the primary aspects of the theoretical analysis.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Stagnation pressure is an important scalar quantity that can

be interpreted as a Galilean variant, approximate local measure of

the energy per unit volume of a fluid. However, despite the fun-

damental importance of stagnation pressure, there appear to be

several misconceptions regarding the plausibility and realizability

of its increase. In particular, there is the assertion that stagnation

pressure cannot locally exceed the value specified at the inflow.

There is also a relaxed form of this assertion that states that the

stagnation pressure is conserved throughout the flow domain, and

that although it may locally exceed the value specified at the in-

flow, it must assume a lower value elsewhere in order to enable

global conservation. The authors have encountered both these as-

sertions in discussions with engineers and practicing fluid dynam-

icists. However, despite their prevalence, both of these assertions
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are incorrect, as stagnation pressure is not conserved in a general

flow, and there are no physical laws that prevent local maxima that

exceed boundary specifications. The purpose of this article is to de-

rive transport equations for stagnation pressure in general flows

(flows of unsteady, viscous, compressible, calorically perfect, ideal

gases) in order to help allay these misconceptions. Furthermore, it

is anticipated that these transport equations will serve as a valu-

able tool for determining when and where stagnation pressure in-

creases will occur, and what the probable cause of such increases

will be.

There have been a number of important efforts to improve

the general understanding of stagnation pressure increases in fluid

flows (cf. Gaible et al., 1991; Issa, 1995; Norris, 2011; van Oudheus-

dan, 1996; Williams, 2002). Before proceeding further, it is im-

portant to note that many of these works frequently refer to ‘to-

tal pressure’ instead of ‘stagnation pressure’. In general, stagnation

pressure and total pressure are not the same quantity, as the latter

is expected to contain contributions from the gravitational poten-

tial energy, while the former neglects these contributions. How-

ever, since body forces are frequently neglected (as they are in this

article), these terms are often used interchangeably. Nevertheless,
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in order to avoid confusion and promote consistency, this work will

proceed to utilize the term ‘stagnation pressure’ in place of ‘total

pressure’ throughout, as this term is arguably more descriptive.

Now amongst the works on stagnation pressure written in the

last three decades, the work of Issa (1995) for steady incompress-

ible flows stands out. In Issa (1995), a transport equation for stag-

nation pressure in steady incompressible flows is obtained from

the Navier–Stokes (NS) equations, and it is shown that stagnation

pressure can increase locally if the viscous stress transport term

exceeds the viscous dissipation term in the transport equation.

Thereafter, Issa obtained analytical solutions for plane stagnation

flow and Stokes flow around a sphere, and demonstrated that for

each flow the stagnation pressure locally increases. These results

were obtained for low Reynolds numbers ( ≤100), as increases (or

decreases) in stagnation pressure for a steady flow are inversely

proportional to the Reynolds number, and are therefore less pro-

nounced in high Reynolds number flows. It should be noted that

in the work of Issa (1995) the viscosity is held constant. In Gaible

et al. (1991), van Oudheusdan (1996), and Williams (2002), simi-

lar results were obtained for cases in which the viscosity is held

constant. In Norris (2011), these results were expanded upon, and

it was demonstrated that stagnation pressure can locally increase

in a steady incompressible flow with varying viscosity, and that

the variation in viscosity can result in higher stagnation pressure

values than if the viscosity was held constant. Analytical solutions

on planar stagnation point flows (with Reynolds numbers ≤1000)

were presented as proof of this phenomena. In each of these flows,

the viscosity was required to vary in accordance with an analyt-

ical function. These efforts were not merely an academic exer-

cise, but were meant to model the effects of variations in eddy-

viscosity on stagnation pressure. For practical problems with larger

Reynolds numbers of O(106), the steady incompressible NS equa-

tions are not solved directly, and it is necessary to employ the

Reynolds averaged Navier–Stokes (RANS) equations in conjunction

with turbulence models that introduce spatially varying viscosity

into the flow to model turbulent eddies (hence the term ‘eddy-

viscosity’). The net overall effect of these models is not entirely

understood, although, it is immediately clear that they significantly

lower the local Reynolds numbers in some regions (Norris and

Richards, 2010; Richards and Norris, 2011), allowing for potential

changes (increases or decreases) in stagnation pressure to become

amplified (as the inverse variation with the Reynolds number no

longer dampens these potential changes). Although Norris (2011)

did not directly explore this effect at high Reynolds number, his re-

sults indicate that local Reynolds number variations (in the neigh-

borhood of low Reynolds numbers) have a non-negligible effect on

stagnation pressure.

The aforementioned work is significant and provides useful in-

sights to engineers and researchers. However, there remain sev-

eral unanswered questions. In particular, it is unclear precisely how

stagnation pressure behaves in unsteady flows of viscous, com-

pressible, calorically perfect, ideal gases. In fact, to the authors’

knowledge, transport equations for stagnation pressure have not

been derived and examined in the context of unsteady, compress-

ible flows. In addition, an analogous set of transport equations has

yet to be obtained for the RANS equations in conjunction with

the associated eddy-viscosity turbulence models (EVTMs). The ob-

jective of this work is to derive these equations and provide in-

sights into the potential causes of stagnation pressure increases in

a broad range of flows. More specifically, this work attempts to

provide guidelines under which fluid dynamicists can determine

whether an increase in stagnation pressure is a numerical artifact

or the result of an accurate solution to the governing equations,

where the governing equations are the NS equations or the RANS

equations with an EVTM.

The layout of this article is as follows. Section 2 presents the

background necessary for constructing an unaveraged transport

equation for stagnation pressure, including the governing equa-

tions for fluid flow and the associated thermodynamic relations.

Section 3 presents the derivation of the unaveraged transport

equation along with an analysis of this equation. Sections 4 and

5 are extensions of Sections 2 and 3 to the Reynolds averaged case

(for EVTMs). Section 6 summarizes all the possible mechanisms

that can cause increases in stagnation pressure. Section 7 presents

the results of numerical experiments that validate the derivations

and analysis from previous sections. Finally, Section 8 summarizes

the results of the entire work and presents avenues for further

research.

2. Preliminaries for the unaveraged case

The following discussion will focus on reviewing the conserva-

tion laws and thermodynamic relations that characterize the com-

pressible and incompressible flows of isotropic Newtonian fluids

(of which calorically perfect, ideal gases are an important type).

2.1. Conservation laws

It is useful to begin by introducing the NS equations, the con-

servation laws that govern a general Newtonian fluid

∂ρ

∂t
+ ∂(ρui)

∂xi

= 0, (1)

∂(ρui)

∂t
+ ∂(ρuiu j)

∂x j

+ ∂ p

∂xi

− ∂τi j

∂x j

= 0, (2)

∂ρ(e + k)

∂t
+ ∂ρui(e + k)

∂xi

+ ∂(ui p)

∂xi

+ ∂qi

∂xi

− ∂(ujτi j)

∂xi

= 0, (3)

where t is the temporal coordinate, xi is the spatial coordinate in

the ith dimension (i = 1, . . . , d, where d is the number of spatial

dimensions), ρ is the density, ui is the flow speed in the ith di-

rection, p is the pressure, e is the internal energy, k is the kinetic

energy (k ≡ uiui/2), τ ij is the viscous stress tensor, and qi is the

heat flux. Here, the thermodynamic variables ρ and p are related

to one another via an equation of state f (p, ρ, T ) = 0 , where T is

the temperature. For an ideal gas the equation of state is

p = ρRT, (4)

where R is the specific gas constant.

The viscous stress tensor for an isotropic Newtonian fluid is

usually modeled as follows

τi j = 2μ
(

Si j − 1

3
δi jSkk

)
, (5)

where Sij is the symmetric part of the velocity gradient tensor that

takes the following form

Si j = 1

2

(
∂ui

∂x j

+ ∂uj

∂xi

)
, (6)

and where μ is the shear viscosity coefficient. Note that, in accor-

dance with standard practice, the rotational and bulk viscosity con-

tributions to the stress tensor have been neglected (de Groot and

Mazur, 2011; Heinbockel, 2001). It is also assumed that the shear

viscosity coefficient’s dependence on temperature (i.e., μ = μ(T ))

is modeled in accordance with Sutherland’s law.

Finally, the heat flux for an isotropic Newtonian fluid can be

expressed in terms of the temperature gradient as follows

qi = −κ
∂T

∂xi

, (7)

where κ = κ(T ) is the heat conductivity coefficient.
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