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a b s t r a c t

A new model for buoyancy driven flows is proposed. It couples an Explicit Algebraic Reynolds Stress
Model (EARSM) and an Explicit Algebraic Heat Flux Model (EAHFM) aiming to reproduce the coupled
effects of flow dynamics and heat transfer via the buoyancy terms. The new model is based upon the Wal-
lin and Johansson (2000) model for the EARSM and upon the Wikström, Wallin and Johansson (2000)
model for the EAHFM. The two models are extended to account for buoyancy. Wall treatments based
on the elliptic blending technique for both EARSM and EAHFM are implemented. A k�x� kh � r model
supplies the turbulent scales, solving transport equations for the turbulent kinetic energy, the specific
dissipation and half the thermal variance together with an algebraic equation for the turbulent time-scale
ratio. The coupling is performed by an iterative process. This model allows to consider the buoyancy and
wall blocking effects whatever the flow configuration. Applications of the new model on the differentially
heated vertical plane channel flow lead to encouraging results whatever the convection regime.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Buoyancy induces coupling between fluid dynamics and heat
transfer and introduces a privileged direction in the momentum
equation. These two features cannot be reproduced with the clas-
sical closure models like eddy viscosity or simple gradient hypoth-
esis. Second order models solve transport equations for the
Reynolds stresses and the turbulent heat fluxes so that they are
able to deal with these effects. Nevertheless, the use of two cou-
pled second order models is very demanding from a computational
resources point of view. Algebraic approaches represent only a
small additional computational effort compared to eddy viscosity
models so that, as already stated by Hanjalić (2002), ‘‘algebraic
models based on a rational truncation of the differential second-
moment closure are proposed as the minimum closure level for com-
plex flows’’.

Firstly developed by Girimaji and Balachandar (1998), one of
these coupled algebraic models devoted to the specific case of
the Rayleigh–Bénard configuration. So et al. (2004) proposed an
algebraic model for general buoyant flows but only assessed it
for two-dimensional homogeneous buoyant turbulent shear flow.
This model is numerically difficult to implement because of a com-
plex formulation. The model also suffers from the lack of specific
wall treatment. Violeau (2009) used coupled algebraic models,

simplified for two-dimensional horizontally stably stratified flow,
to point out the good predictions with this approach and the signif-
icance of the turbulent scale equation. More recently, Lazeroms
et al. (2013) set up an algebraic model with a complete formulation
and including wall treatment. However, the model was dedicated
to horizontally stably stratified flows and many constants were
tuned to simplify the model for this specific case. Some other
authors developed algebraic models, only for turbulent heat fluxes
to be coupled with differential Reynolds stress models.

In an effort to develop a general coupling of explicit algebraic
models for the Reynolds stresses and the turbulent heat fluxes
for CFD codes, the first part (i.e. Vanpouille et al. (2013)) assessed
the prerequisites of algebraic model development. From the analy-
sis of DNS of vertical differentially heated flows, the weak equilib-
rium assumption was validated for Reynolds stresses and
turbulent heat fluxes whatever the convection regime. The DNS
analysis also put forward the need of an appropriate wall treat-
ment. The pressure terms modeling was also examined in order
to select the best models and validate the constants related to
the buoyant contribution. The present paper carries on the devel-
opment and the validation of the model which couples algebraic
models for both Reynolds stresses and turbulent heat fluxes.

This paper is organized as follows. In Section 2, the full model is
developed. The first step of the modeling strategy is the Explicit
Algebraic Reynolds Stress Model (EARSM), followed by its specific
wall treatment. The Explicit Algebraic Heat Flux Model (EAHFM)
and its specific wall treatment come in second. Then, the turbulent
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scale model is detailed. The section ends with the coupling
method. Section 3 deals with assessment of the new model, using
a priori tests and full computations on the vertical channel flow
configuration.

2. Model development

As stated out by So et al. (2004) or more recently by Lazeroms
et al. (2013), an algebraic model for buoyant flows is made of a
Reynolds stress model, a heat flux model, transport equations for
the turbulence scales and their coupling. The DNS analysis of the
weak equilibrium assumptions pointed out the need of near-wall
models for both Reynolds stresses and heat fluxes. It must be
noticed that all the results are given for two-dimensional flows
but are also relevant for three-dimensional flows as a first
approximation.

2.1. Explicit Algebraic Reynolds Stress Model (EARSM)

Algebraic approach is based upon the weak equilibrium
assumption. This assumption was validated on the differentially
heated vertical plane channel flow for each convection regime
and for both Reynolds stresses and turbulent heat fluxes
(Vanpouille et al., 2013). The weak equilibrium assumption applied
to the transport equation of the anisotropy tensor aij ¼
u0iu

0
j=k� 2=3dij leads to the following equilibrium equation:

Pij þ Gij þ /ij � eij ¼
u0iu

0
j

k
Pk þ Gk � eð Þ ð1Þ

where Pij; Gij; /ij and eij are respectively the production, buoyant,
redistribution and dissipation terms in the Reynolds stress trans-
port equation and Pk; Gk and e the production, the buoyant term
and the dissipation rate in the turbulent kinetic energy k transport
equation, defined as:
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where is b the volumetric expansion, Ui the mean velocity, u0i the
velocity fluctuation, T the mean temperature and T 0 the tempera-
ture fluctuation.

2.1.1. Homogeneous model
The present model derivation is based upon Wallin and

Johansson (2000). In Eq. (1), the buoyant terms Gij and Gk are linked
to the turbulent heat fluxes and are thus considered as inputs from
the turbulent heat flux model. A general quasi-linear model for the
redistribution term /ij is:

/ij ¼ � c1 þ c�1
Pk

e

� �
eaij þ c2kSij
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2
3
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The set of constants from So et al. (2004) (Table 1) with c6 ¼ 0:6
for buoyancy term is chosen as it offers a good compromise what-
ever the convection regime (Vanpouille et al., 2013). Nevertheless,

the general linear form of Eq. (3) is used here for the redistribution
term, so that users are free to choose any redistribution model. The
dissipation model is an isotropic model:

eij ¼
2
3
edij ð4Þ

The normalized strain tensor S�ij and vorticity tensor X�ij are
defined as:

S�ij ¼
s
2
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with s ¼ k=e. Eq. (1) can be rearranged as:

N0a ¼ �A1S� � A2 a � S� þ S� � a� 2
3

tr a � S�
� �

Id

� �

þ A3 a �X� �X� � a
� �

þ A4

e
G� 2

3
GkId

� �
ð6Þ

where N0 ¼ A5 þ A6Pk=eþ A7Gk=e and A1 ¼ 4=3� c2; A2 ¼ 1� c3;

A3 ¼ 1� c4; A4 ¼ 1� c6; A5 ¼ c1 � 1; A6 ¼ c�1 þ 1 and A7 ¼ 1 con-
stants are linked to the redistribution model constants. The term

G� 2=3 GkId

� �
will be noted C for conciseness.

In order to derive an explicit expression, the anisotropy tensor is
projected on a tensor basis. For two-dimensional forced convection
flows, the tensor basis reduces to three tensors (Pope, 1975):

S�; S�2 � 1
3

tr S�2
� �
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� �
; S� �X� �X� � S�
� �

ð7Þ

When the velocity gradient goes to zero, this tensor basis
degenerates and gives a null anisotropy tensor, i.e. an isotropic
state. This is not satisfactory for buoyant flows as buoyancy can
also induce anisotropy. For a null velocity gradient, expression
(6) reduces to:

N0a ¼ A4

e
G� 2

3
GkId

� �
ð8Þ

To model buoyancy effects, So et al. (2004) complement the
basis with two tensors derived from C and related to the two-
dimensional and three-dimensional identity tensors. The two-
dimensional identity tensor is difficult to define for three-dimen-
sional flows. Lazeroms et al. (2013) complement the basis to finally
deal with a ten tensor basis for two-dimensional flows. When the
velocity gradient is not zero, these tensor bases are difficult to han-
dle, which leads to a complex formulation to model the anisotropy
induced by the buoyancy.

The proposed strategy is to isolate the solution without velocity

gradient (8), which can be expressed as a ¼ c4 G� 2
3 GkId

� �
with

c4 ¼ A4=ðN0eÞ and to project the anisotropy tensor minus this solu-
tion on the original basis as:
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� �
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Introducing this anisotropy tensor representation into the
algebraic Eq. (6), the projection coefficients ci are determined as
functions of N0 and Gk=e. The so-obtained projection coefficients
ci read:

Table 1
Constants of the So et al. (2004) (SJG) redistribution model.

Model c1 c�1 c2 c�2 c3 c4 c5 c6

SJG 1.7 0.9 0.36 0 0.625 0.2 0 0.6
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