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a b s t r a c t

A linear analysis of the transient evolution of small perturbations in the supercritical FSC cross-flow
boundary layer is presented. We used the classical method based on the temporal evolution of individual
three-dimensional travelling waves subject to near-optimal initial conditions and considered an
extended portion of the parameter space. Our parametrization included the wave-number, the
wave-angle, the cross-flow angle, the Hartree parameter and the Reynolds number. Special focus was
given to the role played by the waveangle in inducing very steep initial transient growths in waves that
proved to be stable in the long term.

We found that the angular distribution of the asymptotically unstable waves and of the waves that
show a transient growth depends greatly on the value of the cross flow angle and wave-angle as well
as on the sign of the Hartree parameter, but depend much less on the Reynolds number. In the case of
the decelerated boundary layer, at sufficiently short wavelengths, transient growths become much more
rapid than the initial growth of the unstable waves. In all cases of transient growth, pressure
perturbations at the wall are not synchronous with the kinetic energy of the perturbation.

We present a comparison with the sub-critical results obtained by Breuer and Kuraishi (1994)
(Re ¼ 500, sweep angle of p=4) for the same full range of the obliquity angle here considered (p radiants).

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

The cross flow boundary layer is one of the most important
boundary layers in engineering applications (aerospace, mechani-
cal, wind. . .), cf. the recent review by Saric et al. (2003) and the
monographs Schmid and Henningson (2001), Criminale et al.
(2003). Examples of cross flow boundary layer include flow over a
swept back air plane wing, rotating discs, cones and spheres and
cones at an angle of attack. It is important to understand the dynam-
ics of this flow and to learn how to prevent the possibility of break-
down to turbulence. Furthermore, unlike the well-known Blasius
boundary layer, breakdown is far more likely in this flow. For exam-
ple, it can be unstable inviscidly as well as that caused by the influ-
ence of viscosity due to the existence of an inflexion point in the
mean profile (Gregory et al., 1955). This work presents a study in
an extended portion of the parameter space of the stability of the
cross flow boundary layer in supercritical conditions with three-
dimensional perturbations based not only on the modal approach
but also examining the temporal evolution of the perturbation. Flow

due to an infinite rotating discs often has been used in literature as
an archetypal example of three-dimensional boundary layers (Saric
et al., 2003). Lingwood (1995) found that in this flow a transition
from local linear convective to radial absolute instability can occur.
This inspired many authors and led to the investigation of the fully
non linear regime (see, among others Pier (2003), Healy (2006)).

The swept-wing boundary layer is genuinely three-dimensional,
which makes its exploration very complex. Despite this complexity,
Lingwood’s approach motivated studies on the possibility of abso-
lute instability operating in the swept-wing boundary layer. In par-
ticular, it was found (Lingwood, 1997) that close to the attachment
line there is chordwise absolute instability above a critical spanwise
Reynolds number of about 545. Taylor and Peake (1998) extended
the study by Lingwood and searched for pinch points in the cross
flow direction for a larger range of flow angles and pressure gradi-
ents. Although these crossflow-induced pinch points do not consti-
tute an absolute instability, as there is no concomitant pinch
occurring in the streamwise wavenumber plane, they can be used
to find the maximum local growth rate contained in a wavepacket
travelling in any given direction. Recently, these findings were
confirmed by Koch (2002) in a work dedicated to the study of the
secondary instability of stationary cross-flow vortices. In general,
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a rigorous proof that the absolute instability cannot occur in a
swept-wing boundary layer does not yet exist.

The three-dimensional boundary layer has been also investi-
gated in the context of receptivity and transient optimal perturba-
tions. Most studies of optimal disturbances in wall-bounded flows
(Luchini and Bottaro, 1998; Luchini, 2000) deal with temporal
growth of perturbations. For example, Corbett and Bottaro (2001)
performed a local stability analysis using a variational technique
in the temporal framework. They found that the three-dimensional
boundary layer shows significantly greater capacity for algebraic
growth than the two-dimensional boundary layer with the same
base flow parameters. Moreover, they proved that the cross flow
angle that maximizes the transient growth is nearly equal to 49�.
Schrader et al. (2009) and Tempelmann et al. (2010) studied the
receptivity problem for spatial growing perturbation considering
vortical free stream modes, free stream turbulence and surface
roughness. They found that steady cross-flow instabilities to dom-
inate for low-level free stream disturbance. Malik et al. (1994,
1999) investigate the secondary instability characteristics of
swept-wing boundary and found that three types of secondary dis-
turbances can be distinguished. The first two were high-frequency
disturbances with high growth rates and maxima located away
from the wall. Their origin was related to regions of high spanwise
shear (type I) and vertical shear (type II). The third type is a low-
frequency disturbance with smaller growth rates and maxima clo-
ser to the wall representing a primary travelling crossflow distur-
bances being modulated by the stationary crossflow vortex.

This work treats the linear perturbation problem and demon-
strates the importance of the results during the transient period
as well the long time behaviour. Near-optimal perturbations which
are localized within the boundary layer thickness are used as initial
conditions (Lasseigne et al., 1999; Corbett and Bottaro, 2001). We
also have good agreement with results obtained by using impulsive
forcing (Taylor and Peake, 1998) or least-damped Orr–Sommerfeld
eigenfunctions as initial conditions (Breuer and Kuraishi, 1994). The
extreme simplicity of this method allows for an extended study of
the parameter space. In particular, special attention was given to
the role played by the direction of the perturbation both in the tran-
sient and in the asymptotic regime. In sub-critical conditions, a sim-
ilar analysis was performed by Breuer and Kuraishi (1994). They
observed that, when the external flow is accelerated, the distur-
bances which have greater transient growth are those that propa-
gate in the crossflow direction. Vice versa, if the external flow is
decelerated, the maximum transient growth is obtained with dis-
turbances propagating in the opposite cross-flow direction.

With this paper we wish to extend the study of Breuer and
Kuraishi by considering supercritical conditions. The pressure
perturbation during the transient is also investigated and in partic-
ular is investigated when the maximum amplification factor for the
pressure measured at the wall come in advance or in delay with
respect to the maximum amplification of the energy.

This paper is organized as follow. The physical problem is
described in Section 2. Section 2.1 is dedicated to the mean
three-dimensional flow, Section 2.2 to the definition of the initial
value problem and modal analysis. Sections 3 and 4 present tran-
sient dynamics and the role of the perturbation inclination and
the long term behaviour, respectively. Section 5 gives information
on the wall pressure transient. Conclusions follow in Section 6.

2. Problem formulation

2.1. Mean flow

As customary, we use the parallel flow approximation to
describe the linear evolution of small amplitude disturbances.

When the parallel flow assumption holds, the base flow compo-
nents only vary with the wall normal coordinate. The assumption
behind this approach is that the mean boundary layer flow quanti-
ties vary slowly in the streamwise direction compared to the dis-
turbance quantities. In general, to account for nonparallel effects
in diverging flows, the spatial formulation of the governing pertur-
bative equations is used, see for example the multiple scale analy-
sis carried out by El-Hady (1991) who considers the nonparallel
effects for subsonic and supersonic boundary layers. A specific
application to the base flow analysed in this paper (the Falkner–
Skan–Cooke boundary layer, with a displacement thickness Rey-
nolds number of 490) can be found in Högberg and Henningson
(1998) where, by means of linear local eigenvalue calculations
compared to spatial direct numerical simulations, it is showed that
nonparallel effects induce a raise in the growth rate of the order of
the 13% along the streamwise direction.

In this paper, nonparallels effect are disregarded. We thus
assume that locally we can represent the boundary layer as a paral-
lel shear flow subject to small pertubations in the form of travelling
waves and define two local coordinate systems as shown in Fig. 1(a)
and (b). On an infinite swept wing, taken any point x� lying on the
wing, we can always distinguish the chordwise direction, xc , from
the streamline direction, x. We use the coordinate system based
on the streamline direction. The y direction is normal to the wall
and the z direction is normal to both x and y directions. A good
approximation of the velocity profiles in a three dimensional
boundary layer is given by the family of similarity solutions known
as Falkner–Skan–Cooke (FSC) solutions (Cooke, 1950; Rosenhead,
1963). There are two parameters in the FSC formulation that allow
the magnitude of the cross flow to be varied: b, the dimensionless
pressure gradient, or Hartree parameter, and h the crossflow angle
between the streamwise direction and the chordwise direction, see
Fig. 1(c). The mean vertical velocity is assumed to be zero.

It should be recalled that with this approximation the external
flow is accelerating as the external pressure decreases (b > 0) and
one can talk of boundary layer in a favourable pressure gradient
and vice versa.

Fig. 1(b) and (c) shows the velocity profiles in this reference
frame. As is customary, variables are non-dimensionalized with
respect to Ue, the free-stream velocity at the boundary layer edge,
and with respect to the streamwise displacement thickness,
d� ¼

R1
0 ð1� UÞdy. The Reynolds number is then defined as

Re ¼ Ued
�=m.

2.2. Initial-value problem and modal analysis

The transient as well as the long term behaviours of arbitrary
three-dimensional disturbances acting on the FSC cross-flow
boundary layer are investigated. We have considered the velocity
vorticity formulation and have Fourier transformed the governing
disturbance equations in the streamwise and spanwise directions
only, using respectively the wavenumbers a and c. This leads to
generalized forms of the Orr–Sommerfeld and Squire equations:

@
@tþ iðaUþ cWÞ
� �

@2

@y2 � k2
� �

v̂ � iðaU00 þ cW 00Þv̂ � 1
Re

@2

@y2 � k2
� �2

v̂ ¼ 0;

@
@tþ iðaUþ cWÞ � 1

Re
@2

@y2 � k2
� �h i

x̂y ¼ iðaW 0 � cU0Þv̂ ;
3;

ð1Þ

where k2 ¼ a2 þ c2 is the polar wavenumber, v̂ and x̂y are respec-
tively the transformed perturbation vertical velocity and vorticity,
U;U0;U00;W;W 0 and W 00 indicate the base flow streamwise and span-
wise profiles and their derivatives in the y direction. The boundary
conditions require that v̂ ¼ v̂ 0 ¼ x̂y ¼ 0 at the wall and at infinity.

On these equations we have performed both a modal analysis
and an initial value problem, which hereafter will be indicated
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