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a b s t r a c t

A new numerical simulation method for water flow in a porous medium is proposed. A porous medium is
discretized graph-theoretically into a discrete pipe network. Each pipe in the oriented network is defined
as a weighted element with a starting node and an ending node. Equivalent hydraulic parameters are
derived based on the Darcy’s Law. A node law of flow rate and a pipe law of pressure are derived based
on the conservation of mass and energy, as well as the graph-theoretic network theory. A unified govern-
ing equation for both the inner pipes and the boundary pipes are deduced. A conversion law of flow rate/
velocity is proposed and discussed. A few case studies are analyzed and compared with those from ana-
lytical solutions and finite element analysis. It shows that the proposed Graph-theoretic Pipe Network
Method (GPNM) is effective in analyzing water flow in a porous medium. The advantage of the proposed
GPNM is that a continuous porous medium is discretized into a discrete pipe network, which is analyzed
same as for a discrete fracture network. Solutions of water pressures and flow rates in the discrete pipe
network are obtained by solving a system of nonhomogeneous linear equations. It is demonstrated with
high efficiency and accuracy. The developed method can be extended to analyzing water flow in fractured
and porous media in 3-D conditions.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Water flow in a porous medium is a fundamental and important
issue in geotechnical and hydrogeological engineering, under-
ground tunneling and mining, dam engineering, nuclear waste dis-
posal, oil and gas reposition, etc. A porous medium consist of solid
matrix and pores network, which is one of the most prevalent
structures of materials in nature. Continuous models are often
established by simplification of the matrix and three kinds of het-
erogeneities, i.e., the microscopic (pore scale), the macroscopic
(core plug scale) and the megascopic (field scale) pores (Abou
Najm et al., 2010; Arora et al., 2011; Sahimi, 2011). Equivalent con-
tinuous models can also be derived for a fractured medium based
on the concepts of representative elementary volume (REV). The
simplification is assumed not to change the macroscopic properties
of a porous medium. The equivalent continuous medium is
then discretized into finite elements for conducting water flow
simulations.

Conventional simulation methods for water flow in a porous
medium are mainly based on the finite difference method (FDM),
the finite element method (FEM) and the finite volume method
(FVM), such as some widely used commercial softwares of MOD-
FLOW (based on FDM) (Kim et al., 2008; Langevin and Guo,
2006), COMSOL Multiphysics (based on FEM) (Xu et al., 2011a,b)
and FLUENT (based on FVM) (Crandall et al., 2010; Xu and Jiang,
2008).

The FEM solves partial differential equations based on the var-
iation principle and the weighted residual method, which consid-
ers the governing equations of nodes as well as the
neighborhoods (Guo et al., 2009; Huyakorn et al., 1983; Zie-
nkiewicz et al., 2005). The FDM only considers the nodes’ values,
but not the variation functions among different mesh nodes (Coo-
ley, 1971; Jing, 2003; Narasimhan and Witherspoon, 1976). Similar
to the FDM, the FVM only solves the node’s values. Neighborhood
equations are assumed to interpret variations among different
mesh nodes, which are similar to the FEM (Demirdžić and Martino-
vić, 1993; Lunati and Jenny, 2006, 2008). The FVM is often regarded
as a bridge between the FDM and the FEM (Fallah et al., 2000; Jing
and Hudson, 2002; Selmin, 1993). Generally, the FDM is easy to be
implement, but the quality of the approximation between the grid
nodes is poor, hence it suffers from a major drawback, not as flex-
ible as the FEM in dealing with complex boundary conditions and
material inhomogeneity (Jing, 2003). However, the FEM suffers
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from another shortcoming of the excessive computational burden,
hence the FDM and FVM tend to be used more often in numerical
simulations of computational fluid dynamics (CFD) while very fine
discretization and large numbers of mesh nodes are required in
some CFD problems (Mishev, 1998; Sharma et al., 2012; Taylor
et al., 1995). Especially, the FVM overcomes some shortcomings
of the FDM, and combines some advantages of the FEM, as well
as reduces the computational effort.

Another important and alternative CFD method is the lattice
Boltzmann method (LBM). It originated from the lattice gas auto-
mata in 1980s (Eggels, 1996; Higuera and Jiménez, 1989; McNa-
mara and Zanetti, 1988). It has been extraordinarily successful in
many applications, including turbulent, multi-component, multi-
phase fluid flows, solute transport, interfacial dynamics as well
as complex boundaries, to name but a few (Aharonov and Roth-
man, 1993; Chau et al., 2005; Sukop and Or, 2004; Walsh and Saar,
2010). Instead of solving the Navier–Stokes (NS) equations and dis-
cretizing the macroscopic continuum equations, the lattice Boltz-
mann method solves the Boltzmann equation by discretizing the

physical and velocity space with lattice nodes and a set of micro-
scopic velocity vectors. Based on simulating streaming and colli-
sion processes across a limited number of particles, the averaged
macroscopic behavior of viscous water flow is evinced by the
intrinsic particle interactions (Attar and Körner, 2011; Frisch
et al., 1986; Nourgaliev et al., 2003; Rothman and Zaleski, 1997).
Different from other numerical methods, the LBM has three distin-
guishing features, which are discussed in reviews (Chen and Doo-
len, 1998). Firstly, the convection operator in velocity space is
linear, and combined with a collision operator allows the recovery
of the nonlinear macroscopic advection. Secondly, the incompress-
ible NS equations can be obtained in the nearly incompressible
limit of the LBM, and the pressure is calculated using an equation
of state. Thirdly, a minimal set of velocities is utilized which
greatly simplify the transformation relating the microscopic distri-
bution function and macroscopic quantities. In a word, the LBM is
based on kinetic theory and statistical mechanics, and represents
the macroscopic responses of water flow through statistical and
average properties of microscopic particles. By developing a

Nomenclature

A incidence matrix
AT transpose of the incidence matrix
AC augmented incidence matrix
aCij element of the augmented incidence matrix
bi serial number of a pipe
PN total number of pipes
C constant
Cijk circumcenter of the triangular mesh (i)–(j)–(k)
F area
Fijk area of the triangular mesh (i)–(j)–(k)
G conductance
g gravity acceleration
Gbi conductance of pipe bi
Gij conductance of pipe (i)–(j)
Grad(Pj)x X-component of the total hydraulic pressure gradient at

node (j)
Grad(Pj)y Y-component of the total hydraulic pressure gradient at

node (j)
hjk corresponding altitude to pipe (j)–(k) in the triangular

mesh (i)–(j)–(k)
h1 elevation head
h2 pressure head
h3 velocity head
I, J, K degree of angles in triangular mesh (i)–(j)–(k)
(i) serial number of a node
k permeability
k0 permeability of the medium without grouting
kg permeability of the grouted medium
KI, IJ, KJ side length of the triangular mesh (i)–(j)–(k)
L length
Lij length of the perpendicular bisector segment corre-

sponding to pipe (i)–(j)
Lij

v upright projection of the perpendicular bisector seg-
ment to the direction of velocity at node (j)

Ljk length of pipe (j)–(k)
Mij center of pipe (i)–(j)
NN total number of nodes
P total hydraulic pressure
P0 total hydraulic pressure on the tunnel surface
P1 total hydraulic pressure on the outer boundary of the

grouting rim
P2 total hydraulic pressure on the model surface
Pb total hydraulic pressure reduction matrix

Pbi total hydraulic pressure reduction in pipe bi
Pj total hydraulic pressure at node (j)
Pn total hydraulic pressure matrix
Pr total hydraulic pressure on the circle of radius r
Q0 water flow through the tunnel face
Qb water flow matrix
Qbi water flow in pipe bi
QF water flow through area of F
Qi�jk water flow perpendicularly from node (i) to pipe (j)–(k)
Qjk water flow from node (j) to (k)
Qr water flow through the circle of radius r
r radius
R resistance
r0 radius of the tunnel
r1 radius of the grouting rim
r2 radius of the model
Rij resistance of pipe (i)–(j)
Sb mean source matrix
Uj velocity at node (j)
Ujx X-component of the velocity at node (j)
Ujy Y-component of the velocity at node (j)
Ur velocity through the circle of radius r
W width
xi X-coordinate of node (i)
Yb mean conductance matrix
Ybij element of the mean conductance matrix
yi Y-coordinate of node (i)
Zb mean resistance matrix
Zbij element of the mean resistance matrix
aji angle from the horizontal axis to pipe (j)–(i)
bj angle from the horizontal axis to the direction of veloc-

ity at node (j)
l water viscosity
l0 water viscosity in the medium without grouting
lg water viscosity in the grouted medium
q water density
DP total hydraulic pressure reduction
DPi�jk total hydraulic pressure reduction between node (i) and

pipe (j)–(k) when water runs perpendicularly from node
(i) to pipe (j)–(k)
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