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a b s t r a c t

A computational technique is presented for determining the fully 3-d viscid unsteady perturbation to a
non-developing laminar swept boundary layer. For zero pressure gradient, unswept boundary layers,
the perturbation method reveals a strongly three dimensional flow within the turbulent spot and its asso-
ciated calmed region which is very similar to that observed in experiments and full DNS calculations. The
perturbation method cannot predict turbulent motion but nevertheless provides a simple yet accurate
means of studying and understanding the development of turbulent spot geometry. The most influential
flow feature is the horseshoe vortex observed in the fluctuation velocity field, which is responsible for
delivering the fluid found in the calmed region between its trailing legs. The upwards flow around the
outer periphery of the vortex is also responsible for delivering low momentum fluid to the spot, but addi-
tional high momentum fluid also enters the spot from its rear through the downward sweeping motion of
fluid between the vortex legs. The effect of an adverse streamwise pressure gradient is to increase the size
of the spot and calmed region whereas a favourable pressure gradient has the opposite effect. When
sweep is introduced to the boundary layer the spot is skewed for all non-zero pressure gradients, but
the changes in size of the spot and calmed region due to pressure gradient are reduced. For favourable
pressure gradients the skew increases monotonically with sweep, but this is not the case for adverse
pressure gradients where the effect of sweep is more complex.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Turbulence and transition modelling remains a critical factor in
the accurate prediction of many engineering flows. Direct numeri-
cal simulation provides accurate solutions to transitional and tur-
bulent flow problems, but it is prohibitively expensive for all but
the simplest of engineering flows and is likely to remain so for
many decades. The prediction of transitional and turbulent effects
is therefore commonly achieved using models which are derived
either from experimental or DNS results, however these results
are only available for a relatively small number of flow conditions.
For boundary layer flows nearly all models are derived from data
for 2-d boundary layers on flat plates, as data for more complex
3-d boundary layers on curved surfaces are sparse. Obtaining suf-
ficient data to formulate models for a sufficient variety of 3-d
boundary layers is however a daunting task through experiment
or DNS. Unfortunately most engineering boundary layers are 3-d
in nature and rarely flow over flat surfaces and so there is a
requirement to extend current predictive methods to more com-
plex 3-d boundary layers.

The majority of current transition models rely on correlations
for the start and end of transition based on carefully executed
wind tunnel experiments on flat plates. The start of transition

correlation derived by Abu-Ghannam and Shaw (1980) is com-
monly used, but their very simple end of transition correlation
is frequently found to be insufficiently accurate. Gostelow recog-
nised that the transition length could be predicted accurately if
the rate at which turbulent spots are generated and the subse-
quent spreading angle of the spots is correlated from experimen-
tal data. To this end he combined results from previously
published work on turbulent spot spreading angles with his
own new experimental data Gostelow et al. (1995) to obtain a
correlation for spot spreading angles over a full range of pressure
gradients for attached boundary layers. Solomon et al. (1995)
successfully used this new correlation to successfully predict
the ERCOFTAC test cases Savill (1991). However, this success
may be partly attributable to the fact that the ERCOFTAC test
cases are for very similar two dimensional flat plate boundary
layers to those used to derive the correlation. The significant dif-
ferences in transition which occur for 3-d boundary layers are
well documented. For example, the effect on transition of con-
cave curvature, due to the presence of Taylor Gortler vortices,
has been observed by several researchers e.g. Zhang et al.
(1995) and Volino and Simon (1997). Johnson (2007) formulated
a transition model for these boundary layers, but this was lim-
ited to zero streamwise pressure gradients and transition models
for any 3-d boundary layer remain rare. Similarly there have
been very few studies of turbulent spots in 3-d boundary layers.
Jahanmiri et al. (1996) have shown through experiment that the
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development of a turbulent spot changes markedly when span-
wise convergence or divergence is introduced to the boundary
layer. There have however been no studies, to the author’s
knowledge, of the development of turbulent spots on concave
surfaces. Evidence from previous work therefore demonstrates
that the transition process is significantly different in 2-d and
3-d boundary layers and therefore the ability of 2-d transition
models to predict transition for 3-d boundary layers must be
questioned.

Many researchers (e.g. Glezer et al. (1989), Gutmark and
Blackwelder (1987), Itsweire and Van Atta (1984), Katz et al.
(1990) and Sankaran et al. (1988)) have used a variety of exper-
imental techniques to study induced turbulent spots in 2-d lam-
inar boundary layers. Ensemble averaging of a large number of
spot realisations has revealed that the basic structure is that of
a single horseshoe vortex tube (Itsweire and Van Atta (1984)).
The spot itself has a planform similar to a triangular arrowhead,
although a streamwise pressure gradient can lead to changes in
this shape (Katz et al. (1990) and Gostelow et al. (1995)). The
trailing edge of the spot is almost invariant with both distance
from the wall and spanwise position and has a convection veloc-
ity close to half the freestream velocity. The leading edge devel-
ops an overhang (Gutmark and Blackwelder (1987)) which
travels at approximately 90% of the freestream velocity distant
from the wall, but at a lower velocity close to the wall. Substruc-
tures, described as eddies, horseshoe or lambda vortices, have
been identified within the spot (Sankaran et al. (1988)) as being
responsible for the generation of turbulence. The spot appears
to grow through the addition of further substructures rather than
the growth in the substructures themselves. These observations
have helped to describe the structure of the turbulent spot, but
as yet a complete understanding of the flow structure within
the turbulent spot has not resulted.

Johnson (1998, 1999) has shown previously that relatively sim-
ple linear perturbation techniques can provide accurate predic-
tions of the characteristics governing the development of
turbulent spots in two dimensional boundary layers. The objective
of the current work is to use these numerical techniques to predict
turbulent spot development in swept boundary layers and hence
determine whether the spot development and hence the transition
length can be accurately predicted using current correlations de-
rived from 2-d boundary layers.

2. Computational method

2.1. Equations of motion

In the current work, the unsteady flow is assumed to be a small
linear perturbation to the time mean flow. For this reason only the
primary instabilities within the flow are determined rather than
full breakdown to turbulence. Nevertheless the characteristics of
the linearly disturbed region are very similar to those of the turbu-
lent spot as shown previously for Poiseuille flow by Li and Widnall
(1989) and 2-d boundary layers by Johnson (1998,1999, 2001).

The two co-ordinate systems used here for the swept plate are
shown in Fig. 1. The x–z co-ordinates are aligned with the plate,
whereas the xf–zf system is aligned with the freestream velocity
U. The plate sweep angle is a. The time mean flow is considered
to be inviscid and hence the boundary layer profile is invariant
across the plate. The steady flow velocity is therefore parallel with
the plate and constant in magnitude and direction on each x–z
plane but both its magnitude and direction vary in the y direction
normal to the plate. The velocity profile is therefore considered to
be that for a non-developing boundary layer on an infinitely wide
plate where a pressure gradient exists only in the x direction. The u
velocity component profile (in the x direction) can then be approx-
imated by the Pohlhausen polynomial

Nomenclature

p0 fluctuating pressure
Red ¼ Ud

m
� �

boundary layer thickness Reynolds number

Reh ¼ Uh
m

� �
momentum thickness boundary layer Reynolds

number
t Time
T ¼ Ut

d

� �
dimensionless time

u steady velocity in x direction
U freestream time mean velocity
u0, v0, w0 fluctuating velocities in x, y and z directions
v 00 amplitude of initiating pulse at x, y, z origin and t = 0
w steady velocity in z direction
x co-ordinate measured from plate leading edge
y co-ordinate measured from wall
z spanwise co-ordinate
X, Y, Z ¼ x

d ;
y
d and z

d

� �
dimensionless coordinates

Xf, Zf dimensionless co-ordinates in freestream and cross flow
directions

a sweep flow angle

d boundary layer thickness
h boundary layer momentum thickness

k ¼ d2

m
dU
dx

� �
Pohlhausen pressure gradient parameter

kh ¼ h2

m
dU
dx

� �
Thwaites pressure gradient parameter

m kinematic viscosity
q Fluid density

Subscripts
c cos coefficient
max spatial maximum value
P pulse width
s sin coefficent
t t derivative
T T derivative
x, y, z x, y and z derivatives
X, Y, Z X, Y and Z derivatives

Fig. 1. Co-ordinate systems.
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