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a b s t r a c t

We present an efficient algorithm for simulation of deformable bodies interacting with two-dimensional
incompressible fluid flows. The temporal and spatial discretizations of the Navier–Stokes equations in
vorticity stream-function formulation are based on classical fourth-order Runge–Kutta scheme and com-
pact finite differences, respectively. Using a uniform Cartesian grid we benefit from the advantage of a
new fourth-order direct solver for the Poisson equation to ensure the incompressibility constraint down
to machine zero over an optimal grid. For introducing a deformable body in fluid flow, the volume penal-
ization method is used. A Lagrangian structured grid with prescribed motion covers the deformable body
which is interacting with the surrounding fluid due to the hydrodynamic forces and the torque calculated
on the Eulerian reference grid. An efficient law for controlling the curvature of an anguilliform fish, swim-
ming toward a prescribed goal, is proposed which is based on the geometrically exact theory of nonlinear
beams and quaternions. Validation of the developed method shows the efficiency and expected accuracy
of the algorithm for fish-like swimming and also for a variety of fluid/solid interaction problems.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

The quantification and simulation of the flow around biological
swimmers is one of the challenges in fluid mechanics (Sotiropoulos
and Yang, 2014). At the same time bio-inspired design of
swimming robots are in growth (El Rafei et al., 2008). The costs
of experimental studies (Belkhiri, 2013) lead the researchers to
develop efficient predictive numerical algorithms for hydrody-
namic analyses of fish swimming. Difficulties of numerical simula-
tions of fish-like swimming are due to different reasons. One
problem is efficient quantification of the kinematics of different
species (more than 32,000) which seems to be far from the simple
laws proposed in different studies. Efficient simulation of incom-
pressible flows is also an important problem, where the efficiency
of the elliptic solver is crucial. The third bottleneck in numerical
simulations of fish-like swimming is the coupling of the fluid sol-
ver with deformable, moving and rotating bodies. Fishes swim by
exerting force and torque against the surrounding water. This is
normally done by the fish contracting muscles on either side of
its body in order to generate moving waves from head to tail. These
waves generally are getting larger as they go toward the tail

(Wikipedia contributers, 2014). The resultant force exerted on
the water by such motion generates a force (even oscillatory)
which pushes the fish forward. Most fishes generate thrust moving
their body and fins. In general these movements can be divided
into undulatory and oscillatory motions. Mechanisms of locomotion
using body and fins are divided into groups that differ in the frac-
tion of their body that is displaced laterally (Breder, 1926). Anguil-
liform swimmers are long and slender, in which there is little
increase in the amplitude of the flexion wave as it passes along
the body. In carangiform swimmers, there is a more remarkable
increase in wave amplitude along the body with the vast majority
of the work being done by the rear half of the fish. In thunniform
fishes almost all the lateral movement is in the tail. Ostraciiform
fishes have no appreciable body wave when they employ caudal
locomotion, only the tail fin itself oscillates rapidly to create thrust.
However there are other minorities (Wikipedia contributers,
2014). The tail beat creates a reversed Kármán street of vortices
and generates thrust, leaving thus a momentumless wake back.
By varying the frequency and amplitude of the oscillation a variety
of wakes, like classical Kármán, two pairs (2P) (Van Rees et al.,
2013), two pairs plus two single (2P+2S), etc. Schnipper et al.
(2009) can be observed (Williamson and Roshko, 1988). Anguilli-
form fishes add a constant curvature to their backbone for turning,
i.e., they use their body like a rudder for torque generation. Yeo
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et al. (2010) studied numerically the straight swimming/cruising
and sharp turning manoeuvres in two-dimensions. It was shown
by Yeo et al. (2010) that a carangiform-like swimmer execute a
sharp turn through an angle of 70� from straight coasting within
a space of about one body length. Gazzola et al. (2012) investigated
the C-start escape patterns of a larval fish by using a remeshed vor-
tex particle method and the volume penalization. The deformation
of the fish, based on the mid-line curvature values, is optimized via
an evolutionary strategy by Hansen et al. (2003) to maximize the
escape distance. Bergmann and Iollo (2011) performed numerical
simulations of fish rotation and swimming toward a prescribed
goal. They considered the average profile of the fish backbone
aligns over a circle with an estimated radius to perform a rotation.
The radius of the circle tends to infinity r !1ð Þ in a forward gait.
The considered fish by Bergmann and Iollo (2011) is constructed by
a complex valued mapping like the Kutta–Joukowski transform
superposed to the fish backbone with prescribed undulatory
motion. Here we will present a simple law for turning control of
an anguilliform fish. Our rotation control law (Bontoux et al.,
2014) is similar to that presented by Yeo et al. (2010), and
Bergmann and Iollo (2011), in which the feedback is based on
the angle between the line-of-sight and the direction of surge.
But instead of adding a radius to the backbone, we envisage to
use curvature which seems to be more efficient. We use the
method proposed by Boyer et al. (2006) which is based on quater-
nions for efficient description of the fish backbone kinematics.

We apply the rotation control to two-dimensional swimming.
Even if due to the shape and deformation style of the fish-like
swimmers the surrounding flow is fully three dimensional, most
of the fundamental features of swimming are included in two-
dimensional analyses. For incompressible flows the Navier–Stokes
equations can be reformulated in terms of vorticity-velocity
(Gazzola et al., 2011) or vorticity stream-function (Spotz and
Carey, 1995). For two-dimensional problems the vorticity formula-
tion is reduced to a scalar valued evolution equation. Hence only
the vorticity transport equation has to be advanced in time. The
choice of finite differences in this paper is related to the use of an
immersed boundary method in which a Cartesian grid can be used.
Therefore the use of finite differences is efficient and straightfor-
ward. Among finite difference methods high-order compact dis-
cretizations, (Hirsh, 1975; Lele, 1992), are more advantageous in
terms of accuracy and reasonable cost. We refer to Abide and
Viazzo (2005) and Boersma (2011) for high-order compact discret-
izations of the incompressible Navier–Stokes equations in primitive
variables and to Bontoux et al. (1978), Roux et al. (1980), and Spotz
and Carey (1995) for compact high-order solutions of the vorticity
and stream-function formulation. Solving the incompressible
Navier–Stokes equations typically implies an elliptic Poisson equa-
tion which is the most time consuming part of the algorithm. Direct
methods like diagonalization or FFT based solvers can be used. Iter-
ative methods, namely, point successive over relaxation (PSOR)
with read-black sweeper, multigrid or Krylov subspace solvers are
other alternatives. Using high-order discretizations iterative meth-
ods are less attractive because the resulted matrices are less sparse,
thus the rates of convergence are slow. However iterative methods
can cover all types of boundary conditions, we refer to Spotz and
Carey (1995) for a fourth-order compact discretization of the Pois-
son equation. On the other hand, in direct methods the memory
limitation is restrictive for simulations on a fine grid. Therefore
decoupling of the directions by FFT based methods can be advanta-
geous, even if this method implies some limitations in the boundary
conditions. We propose a direct fourth-order solver for the Poisson
equation which is a combination of a compact finite difference with
a sine FFT. The main advantages of our method are fourth-order
accuracy, efficiency, the possibility to parallelize and convergence
down to zero machine precision over an optimal grid. Other

advantages and limitations of the proposed solver are discussed
in the paper. A difficulty in numerical simulations of fish swimming
is the analysis of fluid/solid interaction, which can be handled by
strong or loose coupling according to implicit or explicit time
advancement, cf. (Sotiropoulos and Yang, 2014) for a detailed dis-
cussion. We use the volume penalization method, known also as
Darcy-Brinkmann penalization (Brinkmann, 1947), proposed by
Arquis and Caltagirone (1984), Angot et al. (1999) and Khadra
et al. (2000), which belongs to the diffuse-interface immersed
boundary methods (IBMs). It consists of modeling the immersed
body as a porous medium, thus getting rid of the Dirichlet boundary
conditions by considering both the fluid and the body as one
domain with different permeabilities. So one can consider a rectan-
gular solution domain in which the body is immersed and can even
move. The penalization method leads to between first and second
order accuracy near the body and is an efficient method in dealing
with deformable, moving and rotating bodies immersed in a fluid. A
development to deal with rigid bodies colliding with each other in
incompressible flows is performed by Coquerelle and Cottet (2008).
An extension to include elasticity of the solid interacting with fluid
via the volume penalization method is represented by Engels et al.
(2013). One advantage of this class of penalization schemes for
fluid–structure interaction problems is that it enables the use of
time and space adaptivity via multiresolution analysis as recently
demonstrated by Gazzola et al. (2014) and Ghaffari et al. (2014).
We refer to the review of Mittal and Iaccarino (2005) for a complete
classification and description of immersed boundary methods.

In the present work, we will focus on some numerical aspects of
efficient turning laws for anguilliform swimmers, a topic which is
less studied so far. To this end the geometrically exact theory of
nonlinear one-dimensional beams based on quaternions (Boyer
et al., 2006) is adapted to the backbone kinematics description.
Starting by the code developed by Sabetghadam et al. (2009) we
apply compact finite differences to the vorticity stream-function
formulation of the Navier–Stokes equations including the penaliza-
tion term. An efficient direct method is presented for solving the
Poisson equation. Thus different numerical aspects of the algo-
rithm like accuracy in space and the error introduced by the penal-
ization method will be examined. The code is developed in
FORTRAN and is open access (Ghaffari). The paper is organized as
follows. First our methodology including the governing equations,
discretization, kinematics of an anguilliform swimmer and the
algorithm for fluid interaction with forced deformable bodies will
be presented. Next a validation of the algorithm will be carried
out, the errors will be assessed and their convergence will be stud-
ied. Then the results for swimming and rotation control are
reported. Finally, the results will be discussed and some guidelines
for future works will be addressed.

2. Methodology

2.1. Governing equations of incompressible flow

The governing equations of incompressible flows are the
Navier–Stokes equations. In two-dimensional problems the vortic-
ity and stream-function formulation in comparison to the primi-
tive variable formulation has the advantage that it not only
eliminates the pressure, but also ensures a divergence-free velocity
field (mass conservation, i.e., r � u ¼ 0) if the Poisson Eq. (2) is
properly satisfied (Bontoux et al., 1978; Roux et al., 1980). One
encounters two scalar valued quantities, i.e., the vorticity x and
the stream-function w, instead of the velocity vector and the pres-
sure field, thus it makes the computations more efficient. With this
formulation, it is possible to use a collocated grid without adding
any explicit numerical dissipation, which reduces the arithmetics
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