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a b s t r a c t

An advanced second-moment closure for the double-averaged turbulence equations of porous medium
and vegetation flows is proposed. It treats three kinds of second moments which appear in the
double-averaged momentum equation. They are the dispersive covariance, the volume averaged (total)
Reynolds stress and the micro-scale Reynolds stress. The two-component-limit pressure–strain
correlation model is applied to model the total Reynolds stress equation whilst a novel scale-similarity
non-linear k—e two-equation eddy viscosity model is employed for the micro-scale turbulence. For the
dispersive covariance, an algebraic relation is applied. Model validation in several fully developed
homogeneous porous medium flows, porous channel flows and aquatic vegetation canopy flows is
performed with satisfactory agreement with the data.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Due to the recent spread of high-performance low-price digital
computers, it is generally true that large eddy simulations (LESs)
are replacing the methods by the Reynolds-averaged Navier–
Stokes (RANS) equations for predicting turbulent flows. However,
for mechanical, process and civil/environmental engineers, LESs
are likely over the capability of their computers since their routine
issues are very large in scale and simultaneously include much
smaller-scale geometries. For example, simulations around/over
whole-scale motor vehicles and land-scale vegetated canopies
require huge computational domains and treating tiny sub-
components. Performing LESs for those issues is certainly over
the capability of the ordinal computers of the engineers in hand.
It will be true for another few decades as Hanjalić (2005) reviewed.
Therefore, RANS models will be still useful for those issues and
there is no doubt that second-moment closures (or Reynolds stress
models) are better routes to model turbulence in engineering and
the environment as presented by Hanjalić and Launder (2011).

Although the original idea of the second-moment closure goes
back to Chou (1945) and Rotta (1951), its pragmatic forms were
developed by the people of Imperial College (Hanjalić and
Launder, 1972, 1976; Launder et al., 1975; Gibson and Launder,
1978) in 1970s. Indeed, the model of Launder et al. (1975) has been

referred to as the standard second-moment closure and imple-
mented in many versions of commercial software. It is well known
that the key issue of the second-moment closure is modelling the
pressure–strain correlation term appearing in the Reynolds stress
transport equation. (The turbulent energy transport equation does
not keep the pressure–strain correlation due to its traceless
nature.) The pressure–strain term is split into two parts: the slow
and rapid terms, with correction for wall reflection when body
force effects are absence. Although the detailed and complete
model information can be seen in Hanjalić and Launder (2011),
some related comments to the present study may need summaris-
ing briefly.

The slow term expresses the process of anisotropic turbulence to
become isotropic. It occurs slowly due to the anisotropy of
turbulence. For the slow term, Rotta (1951) proposed the liner
return-to-isotropy model consisting of a liner term (in terms of
the anisotropic Reynolds stress tensor). It was followed by many
other models (e.g., Hanjalić and Launder, 1972, 1976; Launder
et al., 1975; Gibson and Launder, 1978). However, by Caley–
Hamilton’s theorem, the quadratic form is enough and does not
require any higher order terms for the general expression. Such
non-linear forms were adopted by later models (e.g., Lumley,
1978; Speziale et al., 1991; Craft and Launder, 1996).

Modelling the rapid term requires more complexity. Since the
rapid term consists of a fourth rank tensor multiplied by mean
velocity gradients, rapid deformation of the flow is reflected to this
term immediately. The simple linear quasi-isotropic (QI) model
was developed considering three basic conditions: symmetry,
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continuity and normalisation, by Hanjalić and Launder (1972),
Launder et al. (1975). Later validation studies suggested that a
truncated form of the linear model called the isotropization-of-
production (IP) model (Launder et al., 1975) worked better. A more
complicated model for the rapid term called the quasi-liner model
was derived by Hanjalić and Launder (1972). Later, Speziale et al.
(1991) derived a similar form by a more rigorous tensor analysis.
This model was proven to be another successful model (Jakirlić
and Hanjalić, 2013). The more general cubic model (Fu, 1988;
Craft and Launder, 1996) was developed considering the two-
component-limit (TCL) turbulence condition as well as the afore-
mentioned three basic conditions. Hence, such a model (e.g.,
Craft and Launder, 1996; Craft, 1998; Batten et al., 1999) is called
the TCL model. (Due to the analysis using Caley–Hamilton’s
theorem by Johansson and Hällback (1994), it was suggested that
fourth order terms were necessary for the most general form.)

As for the low-Reynolds-number (LRN) modelling, Hanjalić and
Launder (1976) firstly proposed an LRN second-moment closure
whilst Launder and Shima (1989) developed an LRN model based
on the model of Gibson and Launder (1978) introducing the effects
of stress anisotropy invariants (Lumley, 1978). Hanjalić and Jakirlć
(1998) applied the dissipation tensor invariants of Hanjalić and
Jakirlć (1993) to calculate the LRN effects in separating flows.

The more recent LRN model of Craft and Launder (1996) adopted
the stress anisotropy invariants and devised the inhomogeneity
correction terms which replaced the wall-reflection terms. Their
model employed the quadratic and cubic forms for the slow and
rapid terms, respectively.

Although the major issues in the development of the second-
moment closures might have been solved in the last century, some
further discussions are still going on. Jakirlić and Hanjalić (2002)
proposed a new model for the dissipation tensor consistent with
the near wall limits. The University of Manchester group are now
focusing on the extension of the TCL model to unsteady flows
(Al-Sharif et al., 2010; Heynes et al., 2013; Craft et al., 2014). Based
on the framework of the TCL model, the present authors (Kuwata
and Suga, 2013a) developed a second-moment closure for porous
medium flows.

It is readily understood that precisely describing the shape of
every pore element of porous media requires despairing efforts
for simulating porous medium flows. Vegetation canopies
(Finnigan, 2000) are also kinds of porous media whose solid
matrices (: plants) are not totally rigid. Thus, applying the volume
averaging theory (VAT) (Whitaker, 1986, 1996) to the flow
equations is therefore the common approach in engineering com-
putational fluid dynamics (CFD) for porous medium and vegetated
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