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A B S T R A C T

Many methods have been suggested for evaluating the evidential value of a matching Y-chromosomal DNA
profile obtained from a biological stain associated with a crime scene and the Y-chromosomal DNA profile of a
suspect. Most of these methods are based on estimating the population frequency of the Y-profile. The common
independence assumption between loci for autosomal DNA profiles cannot be used for Y-chromosomal DNA
profiles. In this paper we reconsider the problem of population frequency estimation by application of Bayesian
networks and the Chow-Liu algorithm to model dependencies between loci. We found that the method based on
the Chow-Liu algorithm performs almost as well as the discrete Laplace method. We have also made comparisons
to the independence model and we have demonstrated once again that the independence method for Y-profiles
cannot be supported.

1. Introduction

The common independence assumption between loci for autosomal
DNA profiles cannot be used for Y-chromosomal DNA profiles [1].
Many methods have been suggested for evaluating the evidential value
of a matching Y-chromosomal DNA profile obtained from a biological
stain associated with a crime scene and the Y-chromosomal DNA profile
of a suspect. These include the kappa (κ) method [2], the coalescent
method [3], discrete Laplace method [4], the generalized Good method
[5], and distribution of number of matching males [6].

The results from Andersen and Balding (2017) (“How convincing is
a matching Y-chromosome profile?” on the distribution of number of
matching males) [6] suggest that for new modern kits, population fre-
quencies may not be the most informative statistic. This is because the
population frequency is believed to vary greatly depending on the re-
ference population with matches most likely to occur to an individual
only in the tens of meioses away from the suspect.

Nevertheless we reconsider the problem of population frequency
estimation in this paper as it contributes to both the understanding of
previous methods (such as the discrete Laplace method) and also to the

application of Bayesian networks and the Chow-Liu algorithm in for-
ensic science. It may still have some practical value for some practi-
tioners, or with profiles from older kits.

2. Method

2.1. Structure of the joint probability mass function

Constructing a statistical model for Y-STR haplotypes is equivalent
to describing the joint probability mass function (jpmf)

…X X XPr( , , , ),L1 2

where Xi is a random variable representing the allele(s)1 at the ith locus.
Frequencies can then be obtained by plugging in alleles x1, x2, …, xL
into this function

… = = = … =f x x x X x X x X x( , , , ) Pr( , , , ),L L L1 2 1 1 2 2

and obtaining the numerical value.
There are many ways to model the jpmf. In this paper, we focus on

the structural form of the jpmf. One such way is to assume
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independence between loci to obtain

∏= = … = ≈ =
=
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For Y-STR profiles the assumptions used to obtain this approximation
do not hold [1] and this approach cannot be supported. Without as-
suming independence the (general) multiplication law of probability
allows us to express the joint probability function as a product of
conditional probabilities. That is, for any events A, B and C the joint
probability Pr(A, B, C) can be written

=
=

A B C A B C A
A B A C A B

Pr( , , ) Pr( )Pr( , | )
Pr( )Pr( | )Pr( | , )

This expression can be extended for any number of events. Applying
this to the problem at hand we have
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Factors, such as Pr(X4,…,XL| X1, X2, X3), in this expansion which con-
dition on many variables are undesirable because they are difficult to
estimate from any reasonable number of empirical data. The difficulty
in estimation arises because, as the number of dimensions in the con-
tingency table increases, there are insufficient data to adequately po-
pulate the cells of the table. This in turn means that there are many zero
entries and that the estimates are highly variable. There is a general
trade-off in modeling: more flexible models (in this case high dimen-
sional contingency tables or factors with many conditional variables)
describe the observed data better, but are generally poorer when it
comes to prediction. This well-known phenomenon is sometimes called
over-fitting.

The independence assumption implies that the conditioning does
not matter. That is, if X1 and X2 are independent, then

=X X XPr( | ) Pr( )2 1 2

(and so on). If every pair of loci is assumed to be independent then the
product-rule estimator is obtained. This is over-simplification for Y-STR.
The model is now very simple in that only one dimensional tables are
used, but the model is now too simple in that it fails to include po-
tentially large dependencies.

We find ourselves stuck between two extremes; assuming full in-
dependence results in a model that is too simplistic, and assuming full
dependence results in a situation where we do not have sufficient data
to fit the model. We opt here for a compromise strategy – namely to find
a model somewhere in between these extremes; the model should not
be too simple (independence assumption), nor be too complicated (full
jpmf where there is no conditional independence between any pair of
random variables).

Take the following example with L=4 loci. Let us assume that

=X X X X XPr( | , ) Pr( | ).3 1 2 3 2

That is, we assume that X3 is independent of X1 given X2. Furthermore if
we assume that

=X X X X X XPr( | , , ) Pr( | ),4 1 2 3 4 2

i.e. that X4 is independent of X1 and X3 given X2, then

=X X X X X X X X X X X X X XPr( , , , ) Pr( )Pr( | )Pr( | , )Pr( | , , )1 2 3 4 1 2 1 3 1 2 4 1 2 3 (1)

= X X X X X X XPr( )Pr( | )Pr( | )Pr( | ).
by assump.

1 2 1 3 2 4 2 (2)

This is one such example that is somewhere between the full jpmf and
the independence assumption. Ideas similar to this have previously
been considered briefly without much success [7,8].

The dependence structure of any joint probability distribution may
be represented as a graph. Each random variable in the distribution
appears as a node in the graph. Dependencies between pairs of random

variables are represented as edges between the nodes representing
those variables. If the edges in the graph are undirected, then the graph
describes a Markov Random Field, and there is considerable literature
devoted to this [9]. However, if the edges are directed, and there are no
cycles, then we find ourselves in the field of Bayesian networks [10].

Bayesian networks (BNs) (also known as directed acyclic graphs
(DAGs), or graphical models) can be used for both illustrating and
reasoning with conditional dependencies, and have a strong presence in
modern forensic literature [11]. Again, each random variable is drawn
as a node in the graph. There is a directed edge from Xi to Xj if Xj is
dependent on Xi (i.e. P(Xj|Xi)≠ P(Xj)), and Xi is said to be a parent of Xj.
The term acyclic refers to the fact that the graph has no cycles. That is,
there must be no path – sequence of edges – that allows the dependence
to return to Xi. The directedness of the graph, and the acyclic restriction
means that the jpmf can be represented by the equation

∏… =
=
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where pa(Xi) denotes the parents of Xi. This representation says that
given its parents, the random variable Xi is conditionally independent of
all other variables in the distribution. This is a powerful statement
which often allows complex problems to become computationally fea-
sible. Note, that it is not allowed to have directed edges in both di-
rections (both from Xi to Xj and from Xj to Xi) as this introduce a cycle of
length two.

Using this notation, the independence model consists of the graph
with nodes X1, X2, …, XL and no edges. The full jpmf (with no condi-
tional independence between any pair of nodes) for four variables can
be represented by the DAG shown in Fig. 1. The jpmf from (2) can then
be represented by the DAG shown in Fig. 2.

Lastly, note that some factorisations and thereby DAGs are
equivalent in the sense that they look different but actually represent
the same distribution (the same probability mass function). For ex-
ample, one factorisation of Pr(X1, X2, X3, X4) based on Fig. 1 is Pr(X1) Pr
(X2|X1) Pr(X3|X1, X2) Pr(X4|X1, X2, X3). An equivalent factorisation is Pr
(X4) Pr(X3|X4) Pr(X2|X3, X4) Pr(X1|X2, X3, X4) (DAG not shown).

2.2. The Chow-Liu method

The Chow-Liu (CL) algorithm [12] provides a structured way to
approximate the jpmf by only using first-order dependencies (single
columns of two-dimensional tables, so for example Pr(X2|X1), Pr
(X3|X2)). The Chow-Liu algorithm builds a tree using the mutual in-
formation for pairs of random variables. The mutual information is a
formal measure from information theory which quantifies the degree of

Fig. 1. Representing the full jpmf Pr(X1, X2, X3, X4)= Pr(X1) Pr(X2|X1) Pr
(X3|X1, X2) Pr(X4|X1, X2, X3) (with no conditional independence) as a DAG.
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