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In forensic genetics, a mixture of two or more contributors to a DNA profile is often interpreted using the
inclusion probabilities theory. In this paper, we present a general formula for estimating the probability
of inclusion (PI, also known as the RMNE probability) from a subset of visible alleles when dropouts are
possible. This one-locus formula can easily be extended to multiple loci using the cumulative probability
of inclusion. We show that an exact formulation requires fixing the number of contributors, hence to
slightly modify the classic interpretation of the PI. We discuss the implications of our results for the
enduring debate over the use of PI vs likelihood ratio approaches within the context of low template

© 2014 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

The analysis of mixtures from low template (LT) DNA profiling
is opening a new era in forensic genetics by providing an
opportunity to extract more information than ever relevant to
judiciary casework from crime scene traces. At the same time, it
raises major probabilistic challenges in the evaluation of the
evidentiary weight of genetic profiles by necessitating the
assessment of alleles potentially present but below the analytical
threshold, the so-called “dropouts”.

Two major schools of mixture interpretation have been
cohabiting for years in the forensic science community [1]:
inclusion probability (PI) theory, also known as the “random man
not excluded” (RMNE) approach, and likelihood ratios (LR). In brief,
the former provides a measure of how inclusive a mixture is by
estimating the proportion of a relevant population expected to
have genotypes such that these individuals cannot be excluded as
possible contributors to a mixture DNA profile. The second uses the
same mixed profile to evaluate two or more competing hypotheses
about the source of a trace. A debate has run over the merits of each
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approach [2-4] but consensus is growing over the superiority of LR
to deal with mixture data in general and dropouts in particular, and
for the evaluation of evidentiary weight in the court [5,6].

Nevertheless, the PI approach can serve for investigative
purposes (i.e. forensic intelligence) such as to evaluate the power
of discrimination or “quality” of a mixture prior to the collection of
a suspect profile [2,7], especially in situations where no known
profiles can be assumed to be present. Thus, it may help the
investigator focus his efforts on the most useful evidence. The PI
can also serve to decide whether a mixture should be searched
against a crime scene or convicted offender databank [2].

For evidentiary purposes, the Scientific Working Group on DNA
Analysis Methods (SWGDAM) guidelines recommend the removal
of loci that exhibit peaks below the stochastic level for cumulative
probability of inclusion (CPI) calculations prior to comparison with
a suspect’s profile [8], unless higher RFU alleles can be interpreted
as a distinct group, in which case a lab could calculate a restricted
CPI using only these alleles (SWGDAM 2010, Sections 4.6.3 and
5.3.5)[8]. However, it has been reported that a widespread practice
was to exclude from the CPI calculations loci for which a suspect
shows discordant alleles. This may not always be conservative and
may produce evidence prejudicial to suspects [9]. While it is true
that many advanced statistical tools for LR calculations are
becoming available for such complex circumstances, a proper
understanding and efficient use of this approach implies much
more than implementing new software within a laboratory. The
effort and time required to properly train analysts should not be
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underestimated. Moreover, there is still some resistance to the LR
framework within the judicial system [1]. Thus, many labs still use
the PI both for evidential and investigative purposes and until the
use of LR becomes more widespread, they are left with few options
to deal with dropouts.

It may seem problematic to develop a PI that accounts for
dropouts because any allele from the population genetic pool could
have been present in the mixture before dropping out, hence, in
theory no “random man” should be excluded at all. Van
Nieuwerburgh et al. [7] proposed a PI formulation that allows for
dropout occurrence. The method requires the user to specify the
number x of dropouts assumed to have occurred on a given mixture
and then considers as not excluded any genotype in the population
matching that restriction. Thus, it makes no assumption about
dropout rates, which has the advantage of avoiding their difficult
estimation. However, Van Nieuwerburgh et al’s PI is unduly
conservative when x > 0 (Tables 1 & 2). This is because the inclusion
of a given genotype with x discordant allele(s) is done only on the
basis of the frequency of the latter in the population rather than on
the joint probability that discordant alleles occurred in the pool of
contributor genotypes in first place and then dropped out.

The above discussion underscores another major issue with
current PI calculations in that they imply a post-hoc interpretation
of mixtures to assess whether, how many or at what loci dropouts
did actually occur, an error-prone process that may be hard to
justify in court. Therefore, one “paints the target around the arrow”
[10]. Ideally, a PI accounting for dropouts should come as near as
possible to the value that would be obtained if it were calculated
with the standard formulation (see Section 2) when all alleles are
visible (no dropouts). Moreover, it would not rely on post-hoc
evaluation of dropouts that may have occurred. An exact
formulation necessitates some knowledge about both dropout
rates and the probability that alleles were present in the trace (or
equivalently, in the pool of contributor genotypes) before dropping
out. No such formulation has yet been proposed, likely because
developers of statistical tools incorporating dropout probabilities
mostly adopt the LR approach. Here we develop such a formulation
and show that it requires fixing the number of contributors to a
trace. Therefore, the interpretation of the PI slightly changes and
we discuss the implications of this. Nevertheless, this formulation
constitutes a more rigorous solution to deal with dropouts than
alternative PI methods proposed thus far.

2. Methods
2.1. Some notations and properties of the probability theory

Let Ay, Ay, ..., Ay the N distinct alleles represented in the
population at a specific locus and let p;, p» ..., pny the
corresponding alleles frequencies or probabilities. Let C the set
of Nc visible distinct alleles from a mixture of NCo contributors.
Without loss of generality, we can assume that
C={A1, ..., An.}. Let G, be the set of all distinct alleles of the
NCo contributors.

Table 1

Frequency of each alleles for three loci used in Van Nieuwerburgh et al.’s [7].
Allele Locus 1 Locus 2 Locus 3
A 0.18 0.15 0.12
Ao 0.19* 0.15 0.12
As 0.20* 0.16* 0.13*
Ay 0.21* 0.17* 0.14*
As 0.22 0.18* 0.15*
As - 0.19 0.16
Ay - - 0.18

The asterisk (*) means that the allele is observed in the evidence profile.

Let Pr(A) designates the probability of an event A. Probability
theory states that Pr(A N B)=Pr(A|B)Pr(B) and, more generally,
Pr(A) =>"nPr(A N B,) = >_,Pr(A|B,)Pr(B,) where {B,} is a partition of
the sample space. This property refers to the law of the total
probability.

2.2. General expression for one locus

The exclusion probability (PE) is the probability that a random
man (or woman)would be excluded at a focal locus. ThenPE =1 — PI,
where PI is the inclusion probability or the RMNE probability - the
random man not excluded. A general expression is

N+1

N(N+1)/2
Pl= " Prg)y (1)
pa

where Pr(g;) is the probability that an individual chosen at random
from the population is of genotype g; at the locus, y; is the
probability that the distinct alleles of g; (denoted g;) are included in
Gc and N(N + 1)/2 is the total number of distinct genotypes made
from N distinct alleles.

Under Hardy-Weinberg (HW) equilibrium, Pr(g;) = ¢pi1Di2,
where p;; and p;, are the frequencies of the first and second
alleles (A;q, Ai2) of g;, respectively, and ¢ =2 if the individual is
heterozygous (i.e. A;1 # Ai2) and ¢ = 1 otherwise. Since C = G.in the
absence of dropout

_J1 ifgiccC
Yi=10 otherwise

and Eq. (1) reduces to the classical formula

Nc(Nc+1)/2

2
Nc

Pl = 21: PPi1Di2 = (E;Pj) (2)
i= j=

2.3. Modelling dropouts

In the presence of dropouts, we need to include not only all
genotypes compatible with C, but also all genotypes not in C due to
the occurrence of dropouts on the mixture. These genotypes are
those g; that satisfy:

g cGesgigC

Note that the first condition does not imply that the genotype g;
is one of the mixture’s contributors but implies instead that its
alleles are compatible with the mixture. The term Pr(g;) in Eq. (1)
remains the same, but the problem is to derive a mathematical
expression for y;.

Lets recall that y; is the probability that the distinct alleles of g;
(g}) are included in G.. When dropouts are possible, all we know
from G, is the visible subset C (C c G). Let Dy = G\ C be the set of
dropout alleles in G. distinct from C (then CNnD,=¢ and
CU Dy =G,). This is equivalent to saying that D, represents one
of the K possible events (or outcomes) of dropout alleles forming
the invisible part of the mixture. Then, conditioning on the
invisible alleles (alleles in dropout) and by summing over all
possible sets of invisible alleles (law of the total probability (see
Section 2.1)), we have

K
> "Pr(gi  Gc|Dy)Pr(Dy)
k=0 (3)

K
> "Pr(gj € CUDy|Dy)Pr(Dy)
k=0

vi=Pr(gicG) =
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