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1. Introduction

Likelihood ratios [4] are used to assess the evidential value of a
piece of evidence under competing hypotheses. Applications of
forensic genetics that use the likelihood ratio include identification
of persons [5], relationship testing [6], familial database searching
[7] and DNA mixture interpretation [8]. The question addressed
here is: what is the probability of obtaining a likelihood ratio
exceeding a given threshold, if a specific hypothesis is true? This
question arises in several applications. For instance, in the context
of DNA mixtures: what is the probability that a non-contributor
obtains a likelihood ratio exceeding 1000 [9]? Or, considering
paternity testing, many labs have the policy of deciding on
paternity when the likelihood ratio exceeds 10,000 [10]. One might
ask: what is the probability for a true father to have a likelihood
ratio exceeding this threshold (the true positive rate)? And what is

the same probability for an unrelated person (the false positive
rate)? Many other practical questions ask for the probability of
exceeding a likelihood ratio threshold under a given hypothesis.

Computing threshold exceedance probabilities for likelihood
ratios is not straightforward and requires significant computa-
tional effort. The literature contains several approaches. One
approach is to use simulation [11–13] to estimate exceedance
probabilities. Specifically, several authors simulate a large number
of genotypes according to a hypothesis and estimate the threshold
exceedance probability from the empirical fraction seen in the
random samples. Simulation is relatively easily implemented, but
a drawback is that many simulations are needed to estimate small
probabilities reliably. A second possibility is to approximate the
likelihood ratio distribution with a continuous distribution.
Nothnagel et al. [2] approximate the distribution of the logarithm
of the likelihood ratio with the normal distribution. The normal
approximation can be very poor in terms of exceedance
probabilities, especially for large values of the threshold. A third
possibility is to approximate the likelihood ratio distribution with
a discrete distribution that has fewer outcomes than the original

Forensic Science International: Genetics 14 (2015) 116–124

A R T I C L E I N F O

Article history:

Received 12 February 2014

Received in revised form 4 August 2014

Accepted 23 September 2014

Keywords:

Likelihood ratio

Exceedance probability

Exact computation

Monte Carlo

Simulation

Importance sampling

A B S T R A C T

What is the probability that the likelihood ratio exceeds a threshold t, if a specified hypothesis is true?

This question is asked, for instance, when performing power calculations for kinship testing, when

computing true and false positive rates for familial searching and when computing the power of

discrimination of a complex mixture. Answering this question is not straightforward, since there is are a

huge number of possible genotypic combinations to consider. Different solutions are found in the

literature. Several authors estimate the threshold exceedance probability using simulation. Corradi and

Ricciardi [1] propose a discrete approximation to the likelihood ratio distribution which yields a lower

and upper bound on the probability. Nothnagel et al. [2] use the normal distribution as an approximation

to the likelihood ratio distribution. Dørum et al. [3] introduce an algorithm that can be used for exact

computation, but this algorithm is computationally intensive, unless the threshold t is very large.

We present three new approaches to the problem. Firstly, we show how importance sampling can be

used to make the simulation approach significantly more efficient. Importance sampling is a statistical

technique that turns out to work well in the current context. Secondly, we present a novel algorithm for

computing exceedance probabilities. The algorithm is exact, fast and can handle relatively large

problems. Thirdly, we introduce an approach that combines the novel algorithm with the discrete

approximation of Corradi and Ricciardi. This last approach can be applied to very large problems and

yields a lower and upper bound on the exceedance probability. The use of the different approaches is

illustrated with examples from forensic genetics, such as kinship testing, familial searching and mixture

interpretation. The algorithms are implemented in an R-package called DNAprofiles, which is freely

available from CRAN.
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distribution. This is the distribution that Corradi and Ricciardi use
[1], who provide a method to compute lower and upper bounds on
the exceedance probabilities. This paper shows how their method
can be improved and that it can be extended further when
combined with the novel algorithm for exact computation that is
presented here. A fourth approach is presented by Dørum et al. [3],
who propose an algorithm that computes exceedance probabilities
and requires very few computations for very large values of the
threshold. Their algorithm however can be prohibitively compu-
tationally expensive unless the threshold value is very large.

This paper introduces three new approaches to the problem of
computing exceedance probabilities. Firstly, the paper explains
how to speed up the simulation approach by applying importance
sampling. This statistical technique [14] makes it feasible to
estimate small probabilities reliably using simulation. Dørum et al.
[3] write that importance sampling appears to be difficult in the
forensic genetics context. As demonstrated here, however, the
application of importance sampling turns out to be straightfor-
ward. Secondly, a new algorithm is presented that can be used to
compute exceedance probabilities. The algorithm divides the loci
into two subsets and explicitly calculates the probability
distribution of the combined likelihood ratio at the two subsets.
Exceedance probabilities for the combined likelihood ratio on all
the loci can be computed efficiently from the probability
distributions at the two subsets. The algorithm can be applied
as long as the probability distributions at the two subsets can be
stored. Thus, the algorithm can be applied to larger problems than
the algorithm of Dørum et al. but the largest problems are still out
of reach. Therefore, thirdly, a new algorithm is proposed that
iteratively applies the approximation of Corradi and Ricciardi [1],
until exceedance probabilities can be computed with the newly
introduced exact algorithm. As such, the algorithm can be
considered a refinement of Corradi and Ricciardi’s approach. Like
the latter, it can be applied to the largest problems and yields a
lower and upper bound for the exceedance probability. The three
new approaches are illustrated using various examples from
forensic genetics.

The structure of this paper is as follows. Section 2 introduces the
problem of determining exceedance probabilities for likelihood
ratios, after which Section 3 discusses approaches from the
literature. Section 4 explains how importance sampling can be
used to speed up the simulation approach. The new algorithm for
computing exceedance probabilities is presented in Section 5. The
new algorithm that iteratively approximates the likelihood ratio
distribution is introduced in Section 6. Section 7 applies the three
new approaches to several problems from forensic genetics. The
conclusion follows in Section 8.

2. Problem description

The likelihood ratio is the ratio of the probability of the evidence
under the prosecution hypothesis (Hp) and the defense hypothesis
(Hd) [15]. The likelihood ratio at locus i is given by:

LRðiÞðeiÞ ¼ PðeijH pÞ
PðeijHdÞ

; (2.1)

where ei denotes the evidence at locus i. For instance, if a single-
contributor DNA profile is observed at m loci with codominant
alleles, then ei = (a, b), with a and b being the alleles of the profile at
locus i. By convention we call the two hypotheses the prosecution
and the defense hypothesis, even outside the criminal context. For
independent loci, the combined likelihood ratio is computed as the
product of the likelihood ratios at each locus:

LRðeÞ ¼ PðejH pÞ
PðejHdÞ

¼
Ym
i¼1

PðeijH pÞ
PðeijHdÞ

¼
Ym
i¼1

LRðiÞðeiÞ: (2.2)

The problem is how to compute the probability that the combined
likelihood ratio exceeds a threshold t, if an hypothesis H is true.
This probability is denoted:

qtjH :¼ PðLR > tjHÞ; (2.3)

with the dependence on e omitted for brevity. Conversely, the
probability that the combined likelihood ratio equals at most t is
denoted:

ptjH :¼ PðLR � tjHÞ ¼ 1 � qtjH: (2.4)

The hypothesis H can be Hp, Hd or even another hypothesis. To
avoid division by zero, every genotype with non-zero probability
under Hp must also have non-zero probability under Hd. Likewise,
we assume that every genotype that can be seen under Hp, can also
be seen under H.

The likelihood ratio at each locus can take a small number of
possible values, called outcomes in the probability context. For
instance, when the evidence is single locus DNA profile, there can

be at most
A þ 1

2

� �
¼ A � ðA þ 1Þ=2 outcomes of the likelihood

ratio, where A denotes the length of the allele ladder. There can be

less than
A þ 1

2

� �
outcomes per locus, since the likelihood ratio

can be identical for several genotypes, as will be shown in
Section 2.2. Denote by ni the number of outcomes at locus i. The

outcomes are denoted xðiÞ1 ; . . . ; xðiÞni
and, under H, the outcomes occur

with probabilities f ðiÞ1 ; . . . ; f ðiÞni
. Formally:

PðLRðiÞ ¼ xðiÞj jHÞ ¼ f ðiÞj ; for j ¼ 1; . . . ; ni: (2.5)

For independent loci, the combined likelihood ratio is the product
of the m likelihood ratios at each locus, so it can be written as:

LR ¼ LRð1ÞLRð2Þ � � � LRðmÞ: (2.6)

The probability that, under H, the combined likelihood ratio
exceeds t can then be written as:

qtjH ¼ PðLR > tjHÞ

¼
X

i1 ;...;im

f ð1Þi1
f ð2Þi2
� � � f ðmÞim

1fxð1Þi1
xð2Þi2
� � � xðmÞim

> tg; (2.7)

where 1 denotes the indicator function. The sum involves
Qm

i¼1 ni

terms. Hence, direct evaluation is only feasible when a few loci are
used or the number of outcomes per locus is small. The following
two examples illustrate the number of terms that can be involved
in the sum. The first example concerns the distribution of the
likelihood ratio for pairwise kinship with a fixed person. The
likelihood ratio thus depends on the single DNA profile of the
person that is not fixed, which leads to a sum that involves from
107 to over 1011 terms, depending on whether 10 or 15 loci are
used. The second example concerns again the likelihood ratio for
pairwise kinship, but does not assume one of the two persons to be
fixed. The likelihood ratio now depends on two DNA profiles, which
leads to a sum that involves over 1020 terms when 10 loci are used
and over 1030 terms for 15 loci. It is completely unfeasible to
compute these sums directly, even on a fast computer.

For the sake of the exposition, the following two examples as
well as most other examples use a simple genetic model that
disregards linkage, contamination, stutter, dropin, dropout and
subpopulation effects. The approaches described here can also be
used with more sophisticated models, although this is less
straightforward, since computing the likelihood ratio then
becomes a problem on its own.
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