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c Mathematical Sciences, Chalmers University of Technology and Mathematical Sciences, University of Gothenburg, Sweden
d Department for Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway

1. Introduction

For a long period of time the CODIS short tandem repeat (STR)
loci [1] have provided the basis for DNA analysis for human
identification. Until a few years ago, there were only a smaller
number of kits commercially available that included other DNA
markers. During the past couple of years there has been an
expansion on the forensic STR kit market, which now offers more
diverse kits with a larger number of new genetic loci. One reason
for this increase is the expansion of the core European standard set
(ESS) [2]. Apart from the standard STR markers, there are also kits
available for forensic use that include biallelic markers such as DIPs

(Deletions and Insertion Polymorphisms) and SNPs (Single
Nucleotide Polymorphisms) [3,4].

Although generally a good thing that a larger number of sets of
markers are available to choose from, there is a challenge in choosing
the best kit for a forensic laboratory’s routine casework. Apart from
technical issues with each new kit, the usefulness (in terms of
efficiencytosolvespecificcases)of theadditionalmarkersdependson
the type of marker, population uniqueness, number of alleles,
mutation rates, and which types of genetic relationships are to be
tested, among other things. Even though there are various general
measurements of the genetic diversity of a given set of markers (e.g.
overall match probability, power of discrimination, power of
exclusion), it can, for numerous applications, be difficult to compare
different sets of markers only on the basis of such general efficiency
parameters.

The purpose of this paper is to describe a method for decision
making when having multiple sets of markers to choose from.
Furthermore, we have applied our method in a comparison of three
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A B S T R A C T

The vast majority of human familial identifications based on DNA end up with a well founded conclusion,

normally using a standard set of genetic short tandem repeat (STR) loci. There are, however, a proportion

of cases that show ambiguous results. For such occasions a number of different supplementary markers

could be typed in order to gain further information. There are numerous markers available for such

supplementary DNA typing, including STRs, deletion and insertion polymorphisms (DIPs), and single

nucleotide polymorphisms (SNPs). The purpose of this work was to describe a precise method for

decision making, aiming to aid the comparison of different sets of markers for different case scenarios in

order to find the most efficient set for routine casework. Comparisons are based on a particular function

relating the expected additional value of information from new data to the amount of information

already obtained from initial data. The function can be computed approximately by approximating

likelihood-based error rates using simulation. In this paper we focused on paternity investigations, more

specifically the use of supplementary markers in cases where a smaller number of genetic

inconsistencies make the matter inconclusive. We applied the method to a comparison of three

different kits: Investigator HDplex (STRs), Investigator DIPplex (DIPs), and the SNPforID-plex (SNPs) to

study their efficiencies in gaining information in different case scenarios involving various alternative

relationships between the tested man and the tested child. We show that the Investigator HDplex was

the most efficient set of supplementary markers for the standard paternity case. However, for paternity

cases with a close relative being the alternative father, the Investigator HDplex and the SNPforID-plex

showed similar patterns in their ability to deliver a well-founded conclusion. The Investigator DIPplex

was the least efficient set.
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different sets of markers; one set that includes 11 STRs
(Investigator HDplex, Qiagen), a second that includes 30 biallelic
markers of the type Insertion/Deletions (InDels) (Investigator
DIPplex, Qiagen), and a third set that includes 52 biallelic markers
of the type Single Nucleotide Polymorphisms (SNPs) (SNPforID).
The goal was to find the most efficient set to be used as
supplementary markers in paternity investigations.

The chosen sets of markers represent two different types,
namely biallelic markers (SNPs [3] or InDels [4]) and additional
STRs. These types have different characteristics. The main
advantage of using SNPs/Indels in paternity testing is their low
mutation rate, thus confirming a genetic inconsistency as a true
genetic exclusion. The disadvantage is that generally only two
alleles exist per locus making it harder to find true genetic
exclusions. For example, in paternity duo cases, the alleged
father (AF) and the child need to be opposite homozygous in
order to yield a genetic exclusion. STR loci on the other hand have
larger number of alleles but also a higher mutation rate, increasing
the uncertainty of whether a genetic inconsistency really is a true
exclusion or in fact a mutation. There are studies promoting the use
of biallelic markers as supplementary markers in relationships
testing [5,6] while other, more recent studies, have concluded that
smaller sets of biallelic markers should be used with caution,
especially when relatives might be involved [7,8].

When it comes to paternity investigations, the vast majority of
such cases end up with a well-founded conclusion: If H1 and H2 are
the two competing hypotheses, with H1 representing paternity, the
likelihood ratio LðDÞ ¼ PrðDjH1Þ=PrðDjH2Þ in favor of H1 is
computed, with D representing the test data. If L(D) > LH for some
cutoff value, for example LH = 10,000, paternity is declared,
whereas if there are numerous genetic inconsistencies, non-
paternity is declared [9]. Different laboratories may use different
rules to declare non-paternity. In this paper, we will assume that
computational models that allow mutations and silent alleles are
used, and that the rule for declaring non-paternity is in fact
formulated as L(D) < LL for some LL. For inconclusive cases where
LL < L(D) < LH, a number of different supplementary markers can
be typed in order to reach a definite conclusion.

To investigate the usefulness of acquiring data D, or additional
data D1 or D2 if the initial test is inconclusive, a central issue is the
error rates for the data. Assuming that one of the considered
hypotheses is true, what is the probability that the likelihood ratio
will lead to an erroneous conclusion, when compared to the cutoff
values. Specifically, we need to consider the functions

E1ð‘Þ ¼ PrðLðDÞ < ‘jH1Þ

and

E2ð‘Þ ¼ PrðLðDÞ > ‘jH2Þ
for various types of data. We will see how these functions can be
approximated using simulation for several specific data types and
hypotheses H1 and H2.

Decision theory is a general way to aid decisions in situations of
uncertainty, by specifying costs of various possible outcomes from
decisions, and then selecting the decision with the lowest expected
cost [10]. Application of decision theory is often hampered by the
difficulty in assigning costs to outcomes. In our case, it is not
obvious how to assign a monetary cost to falsely concluding with
paternity when there is no paternity, or to the opposite type of
error. However, when laboratories decide on cutoff values LH and
LD, they are implicitly making decisions about the relative costs of
various errors. We show how we can use these cutoff values
together with prior odds for paternity and likelihood values
computed from initial data analyses to obtain indirect cost
estimates whose numerical values can be used as part of guides
for decisions.

The data used in the case examples were based on simulations.
Simulation of families and their DNA profiles gives the opportunity
to rather simply investigate different issues and also test the
impact of model change. Both mutations and silent alleles were
modeled and accounted for in our simulations.

2. Material and methods

2.1. Decision theory

Assume two competing hypotheses H1 and H2 have probabili-
ties PrðH1Þ and PrðH2Þ ¼ 1 � PrðH1Þ, and that a choice should be
made between H1, H2, or possibly making no decision. To facilitate
a choice one may assign costs to various outcomes. Without loss of
generality, we assume that making no decision has unit cost, so
that all other costs are measured relative to this. If H1 is true and
we decide on H2 we assume a cost 1 þ c1 is incurred (c1 > � 1),
while we assume a cost of 1 þ c2 in the opposite case (c2 > � 1).
The expected costs of deciding on H1, H2, and making no choice are
PrðH2Þð1 þ c2Þ, PrðH1Þð1 þ c1Þ, and 1, respectively. If c1c2 � 1,
minimizing expected costs leads to choosing H1 if PrðH1Þ > ð1 þ
c2Þ=ð2 þ c1 þ c2Þ and otherwise H2. A more interesting case for us is
when c1c2 > 1, which also implies that c1 > 0 and c2 > 0. In this case
one should choose H1 if PrðH2Þð1 þ c2Þ < 1, H2 if PrðH1Þð1 þ c1Þ < 1,
and otherwise one should make no decision. In terms of the odds
ratio o ¼ PrðH1Þ=ð1 � PrðH1ÞÞ, where PrðH1Þ ¼ o=ðo þ 1Þ and
PrðH2Þ ¼ 1=ðo þ 1Þ, the decision rules are as follows: If c1c2 � 1,
decide on H1 if o > ð1 þ c2Þ=ð1 þ c1Þ, otherwise on H2. If c1c2 > 1,
decide on H1 if o < c2, H2 if o < 1=c1, and otherwise make no
decision. Generally o will be the posterior odds based on data D.
According to Bayes formula on odds form we have o ¼ LðDÞo0,
where L(D) is the likelihood ratio and o0 the prior odds.

In DNA testing laboratories, decisions are generally not made by
first estimating costs c1 and c2. Instead, one often uses fixed lower
and upper bounds to which L(D) is compared: If L(D) is very high,
H1 is declared true, if L(D) is very low, H2 is declared true, and in
between one delays a decision. This paper focuses on helping
laboratories choose additional data sets when L(D) gives an
inconclusive result. That inconclusive results are possible means as
we saw above that c1c2 > 1 and that both c1 and c2 are positive.

When making a decision based on D, the theoretically most
sound approach is to compare o ¼ LðDÞo0 to cutoff values LH and LL,
and declare H1 true if o > LH , declare H2 true if o < LL, and otherwise
declare the result inconclusive. In practice, however, laboratories
for convenience often ignore the prior odds o0, comparing L(D)
directly with LH and LL to make the decision. Let us define L�H ¼ LH

for the first type of decision making, and LH
� ¼ o0LH for the second

type, and similar for L�L . Then in all cases, H1 is chosen if o > L�H , H2 is
chosen if o < L�L , and in between no decision is made. Comparing
with the above, we see that c1 ¼ 1=L�L and c2 ¼ L�H , in other words,
the decision routines of the laboratories implicitly correspond to
estimating costs c1 and c2 at these values.

We now consider the situation where results using data D are
inconclusive, i.e., L�L < o < L�H , and we would like to optimally choose
between producing additional data sets D1; D2; . . . ; DN , or possibly
produce none of these datasets. We start by defining for i ¼ 1; . . . ; N

and any ‘ > 0 functions

Ei1ð‘Þ ¼ PrðLðDiÞ < ‘jH1Þ

Ei2ð‘Þ ¼ PrðLðDiÞ > ‘jH2Þ

As these cumulative probability distribution functions measure
the probability to make ‘‘errors’’ in the sense of making a wrong
conclusion, we will refer to them as error rates. As we assume the
different data sets are independent given the hypotheses, the
decision after Di has been acquired should be based on comparing
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