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a b s t r a c t

We present numerical simulation results of the quasi-static magnetohydrodynamic (MHD) flow in a
toroidal duct of square cross-section with insulating Hartmann walls and conducting side walls. Both
laminar and turbulent flows are considered. In the case of steady flows, we present a comprehensive
analysis of the secondary flow. It consists of two counter-rotating vortex cells, with additional side wall
vortices emerging at sufficiently high Hartmann number. Our results agree well with existing asymptotic
analysis. In the turbulent regime, we make a comparison between hydrodynamic and MHD flows. We
find that the curvature induces an asymmetry between the inner and outer side of the duct, with higher
turbulence intensities occurring at the outer side wall. The magnetic field is seen to stabilize the flow so
that only the outer side layer remains unstable. These features are illustrated both by a study of statis-
tically averaged quantities and by a visualization of (instantaneous) coherent vortices.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

In magnetohydrodynamics (MHD), one studies the coupling
between flows of electrically conducting fluids and electromag-
netic fields. This branch of physics describes a vast range of phe-
nomena, like the origin of the Earth’s magnetic field or the
suppression of turbulence due to a magnetic field in industrial melt
flows. For most industrial applications and laboratory flows, the
coupling is virtually one-way; this means that the flow is signifi-
cantly affected by the Lorentz force due to the action of the mag-
netic field, but that the induced magnetic field remains negligible
compared to the externally imposed one. Such a behavior is the
signature of flows in which the magnetic Reynolds number
Rm = lrU L is small compared to one. Here, l and r are respectively
the magnetic permeability and the electrical conductivity of the
fluid, while U and L are typical velocity and length scales of the
flow under consideration.

Under such conditions, called the quasi-static regime, the mag-
netic field mostly tends to suppress variations along its direction. If
the magnetic field intensity is high, this results in a flow consisting
of an extended, quasi-uniform core, surrounded by thin shear lay-
ers due to the presence of solid boundaries or discontinuities. We
can distinguish between two different types of wall shear layers:
the Hartmann layer, which occurs at walls with their normal vector
non-perpendicular to the magnetic field and the side layer (or
parallel layer), which emerges at walls parallel to the magnetic

field. Under laminar conditions, their thickness can be expressed
in terms of the Hartmann number M, a dimensionless measure of
the ratio between the Lorentz and viscous force. The Hartmann
layer has a typical thickness of OðM�1Þ, while that of the side layer
scales as OðM�1=2Þ. These shear layers are prone to three-dimen-
sional stabilities, as discussed by Thess and Zikanov (2007).

In the past years, there has been considerable interest in the
role of the different shear layers in the transition of wall-bounded
MHD shear flows. Krasnov et al. (2004) performed a computational
study of the instability of the Hartmann layer, and found that the
parameter which governs the transition, is the ratio between the
Reynolds number Re and the Hartmann number. In their study,
the transition is seen to occur for values of Re/M between 350
and 400. Moresco and Alboussière (2004) performed friction factor
measurements in a toroidal duct of square cross-section at high
Hartmann and Reynolds number. Since the major part of the fric-
tion occurs in the Hartmann layer for high Hartmann number
flows, they conjectured that a sudden change in the behavior of
the friction factor is related to a transition in the Hartmann layer.
Their measurements showed that this transition occurs at
Re/M � 380, regardless of the exact value of the Hartmann number.
A linear stability analysis of Lingwood and Alboussière (1999)
yielded a critical value of Re/M � 48,250. This large discrepancy
indicates that the transition is triggered by non-linear effects.

The experimental method adopted in Moresco and Alboussière
(2004) did however not allow to study the behavior of the side lay-
ers. A computational study of Krasnov et al. (2010) on the other
hand, showed that the nuclei of instability in MHD straight duct
flow are located in the side layers. The common feature in all these
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studies is that the Hartmann walls are insulating. Other authors
have considered the instability in duct flows with conducting
Hartmann walls (Reed and Picologlou, 1989; Kinet et al., 2009).
These flows however are characterized by strong side wall jets,
and undergo a completely different transition; they are not directly
relevant to the present work.

It is clear that the experiment of Moresco and Alboussière
(2004) is far from fully understood. Currently, it is unfortunately
not possible to access the whole parameter range covered in the
experiment with numerical simulations. Moreover, even the lami-
nar behavior of MHD toroidal duct flow is relatively unexplored. To
the best of our knowledge, only two studies of the laminar flow in
such a configuration have been undertaken. The first one was per-
formed by Baylis and Hunt (1971). They used an asymptotic ap-
proach, i.e. they assumed the existence of an inertialess and
inviscid core, which is surrounded by thin shear layers. Their re-
sults show that the inertial term is negligible when the aspect ratio
between the length and the average radius R of the duct is small
compared to M/R. One decade later, Tabeling and Chabrerie
(1981) performed a more detailed analysis, in which they consid-
ered the curvature as a small parameter. This allowed them to
compute the secondary flow profile in the shear layers for suffi-
ciently low values of the curvature and the Reynolds number and
high values of the Hartmann number. They predicted that stream-
wise-oriented vortices would occur in the parallel layers, whose
exact shape depends on the electric boundary conditions. Further-
more, they found that the secondary flow has a strong radially in-
ward component along the Hartmann layers.

Hence, the aim of this work is to compute the full solution the
MHD flow of a liquid metal in a toroidal duct. Our work is orga-
nized as follows: first, we outline the mathematical formulation
and the computational details of our simulations. The two follow-
ing sections are devoted to a discussion of the results for respec-
tively steady and non-steady flows. The last section summarizes
the most important conclusions of this work.

2. Mathematical model and computational method

We consider the incompressible flow, characterized by a velocity
field u, of a fluid in a square annular duct with mean radius R and
length 2L (see Fig. 1). The axis of the torus is along the y-direction.
The material properties of the fluid, like its mass density q, kine-
matic viscosity m and electrical conductivity r are assumed to be
constant. The flow is subjected to a uniform magnetic field
B = B01y. Moreover, we assume that the magnetic Reynolds
Rm� 1, so that the magnetic field does not change with time; this
is called the quasi-static approximation. This means that the in-
duced electric field can be derived from a scalar potential function
/ (Roberts, 1967). The electric current density j obeys Ohm’s law
for a moving conductor:

j ¼ rð�r/þ u� BÞ ð1Þ

The constraint of charge conservation under the quasi-neutrality
assumption, r � j = 0, leads to a Poisson equation for the potential:

r2/ ¼ r � ðu� BÞ ð2Þ

The equations of mass and momentum conservation are the stan-
dard incompressible Navier–Stokes equations in which a Lorentz
force term is added:

qð@tuþ u � ruÞ ¼ �rpþ qmr2uþ j� B ð3Þ
r � u ¼ 0 ð4Þ

The boundary conditions for u and / are the following. For the
velocity, we apply standard no-slip conditions on all the walls.
The electrical boundary conditions are inspired by the work of
Moresco and Alboussière (2004). This means that we have perfectly
insulating Hartmann walls and perfectly conducting side walls.
Mathematically:

u ¼ 0; @n/ ¼ 0 at y ¼ �L ð5Þ
u ¼ 0; / ¼ �V=2 at r ¼ R� L ð6Þ

This makes clear why we do not need an external forcing term in Eq.
(3). By imposing a voltage difference between the side walls, a ra-
dial current is injected in the fluid. The Lorentz force resulting from
the interaction between this current and the magnetic field, pro-
vides the necessary forcing of the flow. Our formulation is slightly
different from the one of Moresco and Alboussière (2004) in the
sense that, in the experiment, the amount of injected current at
the side walls was fixed, rather then the potential. In other words:
The side wall potential in the experiment was thus constant in
space, but still varying in time, while we allow fluctuations in time
of the total amount of injected current. In the laminar regime, both
formulations are of course strictly equivalent.

We can use the linearity of the Laplacian operator to split Eq. (2)
with boundary conditions (5), (6) in two parts: / = /1 + /2. Here, /1

is a solution of the non-homogeneous Eq. (2) with Neumann con-
ditions on the Hartmann walls and homogeneous Dirichlet condi-
tions /1 = 0 on the side walls. /2 on the other hand is a solution
of the Laplace equation r2/2 = 0, also with Neumann conditions,
but now with non-homogeneous Dirichlet conditions /2 = ±V/2 at
r = R ± L. In the present geometry, the potential /2 and the corre-
sponding external forcing fext take the following form:

/2 ¼
V

ln RþL
R�L

� � ln
rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 � L2
p
 !

ð7Þ

fext ¼ �rr/2 � B ¼ fext1h ¼
VB

r ln RþL
R�L

� �1h ð8Þ

We see that r/2, and thus the external forcing, decrease as 1/r in
radial direction and are independent of the velocity field.

The different cases that we will consider can be characterized
by three non-dimensional numbers: the well-known Reynolds
number Re, the Hartmann number M, and the ratio between the
duct length and the mean radius of the annulus:

Re ¼ UL
m

ð9Þ

M ¼ B0L
ffiffiffiffiffiffi
r
qm

r
ð10Þ

f ¼ L
R

ð11Þ

In the definition of Re, the characteristic velocity U is defined as the
bulk streamwise velocity. We use a finite-volume method to discret-
ize the equations. Our code is called YALES2, and is discussed in
Moureau et al. (2011). All the variables are defined at the centers
of the control volumes. It is however necessary to define velocities
at the control volume faces to avoid spurious pressure oscillations.

Fig. 1. Sketch of the annular geometry. The color of the walls indicates their electric
conductivity: perfectly conducting (light gray), and perfectly insulating (dark gray).
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