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a b s t r a c t

Big datadthe idea that an always-larger volume of information is being constantly recordeddsuggests
that new problems can now be subjected to scientific scrutiny. However, can classical statistical methods
be used directly on big data? We analyze the problem by looking at two known pitfalls of big datasets.
First, that they are biased, in the sense that they do not offer a complete view of the populations under
consideration. Second, that they present a weak but pervasive level of dependence between all their
components. In both cases we observe that the uncertainty of the conclusion obtained by statistical
methods is increased when used on big data, either because of a systematic error (bias), or because of a
larger degree of randomness (increased variance). We argue that the key challenge raised by big data is
not only how to use big data to tackle new problems, but to develop tools and methods able to rigorously
articulate the new risks therein.

© 2016 Published by Elsevier Ltd.

1. Introduction

Data offers a quantified outlook on the world we all live in. As
scientists, we strive to best articulate and extract important and
defensible conclusions from this outlook. Big datadthe idea that an
always larger volume of data is being constantly record-
eddsuggests that new problems can now be subjected to scientific
scrutiny. However, the variety of ways big data is collected raises
issues. These issues are made concrete by the observation that
scientists, starting from the exact same very large dataset, and
progressing through rigorous statistical arguments, may reach
contradictory conclusions. Examples, unfortunately, abound: for
instance, the same drugs were found to be successively efficient
and inefficient based on the same dataset.1e4

It is because data is a quantified outlook on the world that we
assume it is an impartial one. Yet, as stressed again recently by the
American Statistical Association,5 “proper inference requires full
reporting and transparency”. The core of the message is that using
statistical methods, however rigorously, does not exempt from
providing a full account of how the data was collected, and of the
arguments that led from the data to the conclusions. Concretely, it
means that statistical methods are not automated oracles, to which
one may input data and receive as output a true conclusion. Sta-
tistical methods are but tools to be used, as part of a discussion, by
experts to justify their conclusion. Using forensic science

terminology, “forensic reasoning”6 cannot systematize
“individualization”.7

When using statistical methods to support and justify a
conclusion, the key concept that requires transparency is uncer-
tainty: how confident can one be about the conclusion reached by
the statistical analysis? what are the main weaknesses of the ar-
guments going from the data to the conclusion? are the assump-
tions underpinning the analysis credible? It is tempting to reduce
uncertainty to a single number, quantifying how likely is the
reached conclusion to be true given the observed data; or
conversely quantifying how risky it is to trust the proposed
conclusion. However, to produce any such number, assumptionwill
have to be made, so that the uncertainty of these assumptions
would have to be quantified too, leading to a circular argument.
Therefore, a single number cannot capture the complexity and
subtlety of the uncertainty in a conclusion reached by statistical
methods. Instead, the uncertainty of the conclusion should rather
be discussed as transparently as possible.

Statistical science, as a field, provides many methods and tools
to dissect, articulate and quantify uncertainty. Ideally, these
methods and toolsdbe they frequentist or Bayesiandshould
enable researchers to provide a full report, intelligible by all, dis-
cussing the uncertainty of their conclusion. Nonetheless, especially
in the case of big data, building such a report is not an easy task: the
interplay between the assumptions made, the technicality of the
methods used, and the need to produce an accessible yet precise
summary, makes it a very hard exercise even for the best of us. For
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intance, a long discussion has recently taken place in the pages of
the Proceedings of the National Academy of Sciences8e14 debating
the validity of the statistical arguments used to suport the claim
that hurricanes with female names are deadlier.15 Furthermore, big
data being a new type of data, statistical methods especially
developed for big data are still in their infancy, and experts agree
that much progress still needs to be made in the field.16,17

To exhibit how hard it is to fully articulate the uncertainty
stemming from using big data, we will focus on two key sources of
uncertainty: uncertainty from the data, and uncertainty from the
model. The first pertains to how accurate, complete and clean is the
data; the second to the fidelity, flexibility and power of the model.
Although deeply related, the two types of uncertainties have
different natures. The first requires making subtle observations on
the structure of the data and how it was collected: it is tied to the
more classical statistical concept of bias. The second requires
making a rigorous formal treatment of the model, or framework,
used, and is tied to the statistical concept of inflated variance.

More precisely we will focus on two concrete issues one has to
face when using big data. The first is concerned with how the data
was collected, and is technically referred to as selection bias. It asks
the question of how statistical methods are affected when the
observed data only represents a biased sub-part of the population.
The second is concerned with models requiring weak dependence
between data points. It asks the question on how uncertainty, or
more precisely the variance, is increaseddor possibly
decreaseddby the presence of this dependence. Both problems are
pervasive in the era of big data, and we will give examples both of
datasets and of statistical methods where this is the case.

2. Selection bias

In most contexts “big data” is the data generated by individuals,
or sensors, throughout the world; in a sense, it is the byproduct of
the presence of technology in our societies. Therefore, despite its
volume, it might present some severe “blind-spots”; i.e., the
informational content of the data might be incomplete. If the data's
informational content is incomplete, the conclusions drawn from it
are very uncertain. More precisely, these conclusions are biased in
that they focus on only one part of the information.

One interesting case is that of using tweets to obtain live in-
formation on large scale events, specifically here the evolution of an
hurricane and its consequences using live analysis of tweets.18,19

Unfortunately, using such approaches may lead to a biased
impression of where the damages occurred. As argued by
K. Crawford20 on the analysis of N. Grinberg et al.18 concerning
hurricane Sandy, most tweets came from Manhattan and not from
“more severely affected locations, such as Breezy Point, Coney Is-
land and Rockaway”.

The biased impression of where the damages occurred is caused
not only by the relative density of population, but crucially by the
relative density of effective smartphones: power outages meant
that smartphones were not recharged, poorer areas had less
smartphone owners, severely hit areas had poorer network
reception, and so on. Therefore, few tweets came from areas where
the hurricane caused power outages or bad network connections,
so that severely hit areas are underrepresented in the sample. In the
same fashion, poorer areasdareas that might be both more
extensive and less robust to hurricanesdare also underrepresented
in the sample. This means that using tweets to study the evolution
of a hurricane can but produce a biased analysis of the said evo-
lution, biased toward the smartphone rich locations.

In this case, and in many others, the bias comes not from idio-
syncrasies in the data, or from issues with the statistical method
used, but from the nature of data itself. In the hurricane example,

the data itself is completedthe data consists of all tweets in the
New-York areadthe method used is rigorous, and yet it presents a
biased view of the hurricane's evolution since few persons tweeted
in the more severely affected areas. It is because the data appears
complete that it is so hard to detect that in fact it presents a biased
view of events.

Similar examples, where the data appears complete but is in fact
biased, abound. This is also true in the field of forensic science, and
crucially to evaluate the prevalence of crimes: the chance of a crime
being reported will vary depending on many factors, such as the
gender, income, religion, cultural origins of the victim and perpe-
trator, the type of neighborhood the crime took place in, and so on.
Furthermore, different crimes will be likelier to be reported than
others, even for the same victim. Therefore, the data consisting of
all crimes reported to the police most probably presents a biased
view of the true rate of crimes, and this bias will change depending
on the crime, region or population considered.

We now clarify with an example to what extent such partial, or
biased samples, distort estimates and increases the uncertainty of
the conclusion of a statistical analysis. Because biased samples
falsify the assumption underlying classical statistical methods, the
consequence of using biased samples can be surprisingly extreme
and counterintuitive. In this sense, it is educating to consider the
effect of biased samples on the simple example of correlation.

Correlation has been invented more than a century ago,21e23

and is today maybe the most used measure of linear dependence
in all fields of statistics. Surprisingly, it is very weak to selection
bias. To see this, let us consider three real-valued random variables
X,Y and Z and call rXY the Pearson, or linear correlation, between X
and Y; recall that by definition we have:

rXY :¼ covðX; YÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðXÞ,varðYÞp ,

Note that we make no assumption on the dependence between
the three variables X,Y and Z, and neither of them need be a
mediation factor,24 instrument or confounder25 between the
others.

Now, assume that we observe a biased sample, such that we
only observe X and Y if Z falls within a given subset of its support A.
In the hurricane example, X would be the effective damage in an
area, Y would be the number of tweets, Z would measure the
availability of a smartphone to tweet, and A would take the form
[a,þ∞[ for some smartphone availability threshold a. In a crime
prevalence examples, Xwould be the number of crimes, Ywould be
the victim's income level, Z would be the victim's propensity to
report a crime, and A would again take the form [a,þ∞[ for some
reporting probability threshold a. In both examples all variables are
strongly interrelated.

In this setting, following the definition presented in the previous
equation, the correlation observed in the available sample is

rXY jZ2A :¼ covðX; Y j Z2AÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðX j Z2AÞ,varðY j Z2AÞp ,

However, rXY jZ2A need not be equal to rXY. It follows that
computing correlation using our partial sample leads us to esti-
mating not the correlation between X and Y ( rXY), but another
parameter altogether: rXY jZ2A. Therefore, using our partial sample
leads to a systematic errordor biasdof magnitude jrXY jZ2A � rXY j.
Surprisingly, even if (X,Y,Z) is a Gaussian vector, one of the simplest
possible distribution and the most amenable to classical statistical
methods, then the bias jrXY jZ2A � rXY j may be substantial. In Fig. 1
we provide an examplewherewe let A range the deciles of Z. In that
case, rXY jZ2A varies widely depending on the decile considered, and
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