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a b s t r a c t

In this article, a high-resolution diffuse interface method is investigated for simulation of compressible
two-phase gas–gas and gas–liquid flows, both in the presence of shock wave and in flows with strong rar-
efaction waves similar to cavitations. A Godunov method and HLLC Riemann solver is used for discreti-
zation of the Kapila five-equation model and a modified Schmidt equation of state (EOS) is used to
simulate the cavitation regions. This method is applied successfully to some one- and two-dimensional
compressible two-phase flows with interface conditions that contain shock wave and cavitations. The
numerical results obtained in this attempt exhibit very good agreement with experimental results, as
well as previous numerical results presented by other researchers based on other numerical methods.
In particular, the algorithm can capture the complex flow features of transient shocks, such as the mate-
rial discontinuities and interfacial instabilities, without any oscillation and additional diffusion. Numer-
ical examples show that the results of the method presented here compare well with other sophisticated
modeling methods like adaptive mesh refinement (AMR) and local mesh refinement (LMR) for one- and
two-dimensional problems.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Numerical simulation of multiphase or multi-component flow
is a challenging subject with many applications in industry and
in modeling natural phenomena. For example, multiphase or mul-
ti-component flows are significant in the physics of explosion,
astrophysics, supersonic combustion systems, the detonation of
high energy material and shock wave treatment of cancer in the
medical industry. The models and numerical simulations pre-
sented in recent literature present different levels of accuracy
and complexity. In general, these types of methods can be sepa-
rated into two categories by how each considers the interfaces:

1. Sharp interface method (SIM)
2. Diffuse interface method (DIM)

In the sharp interface methods, a special effort is made to find
the right location of the interface and to treat the interface explic-
itly. This method includes: general types of Lagrangian methods
(Shopov et al., 1990); Euler methods, including the level set and
VOF approaches (Pilliod and Puckett, 2004; Sethian, 1996; Osher
and Fedkiw, 2001; Hu et al., 2009) combined Euler–Lagrangian
methods, including front tracking and front tracking with ghost

fluid approaches (Unverdi and Tryggvason, 1992; Terashima and
Tryggvason, 2009, 2010), ALE1 methods (Doneal et al., 2004; Anbar-
looei and Mazaheri, 2009) and MMIT2 methods (Quan and Schmidt,
2007). The main weaknesses of these methods are high complexity,
high computational cost, long CPU time and failure in interface pre-
diction when the phenomena has no beginning or initial state for the
interface (Saurel and Le Metayer, 2001). It should be emphasized
that the ability to dynamically create interfaces that are not present
initially is very important for flows with cavitations. For complicated
interface conditions, the above-mentioned methods exhibit numeri-
cal diffusion and high numerical inaccuracy. Additionally, it is diffi-
cult to develop them to higher spatial cases (2D or 3D). Recently
Chang and Liou (2007) have developed a stratified flow model that
is capable of modeling compressible gas–liquid flows. However,
the implementation of their method is highly complex.

In the second group of numerical methods, DIM, the interface is
modeled as a numerically diffused zone (area), which is similar to
capturing a discontinuity in gas dynamics (Saurel and Le Metayer,
2001). In fact, it can be mentioned that this type of diffused inter-
face is a kind of artificial diffusion that is created by numerical cal-
culations. These methods are divided into two general categories:
those based on the Euler equations and those based on multiphase
equations. The works based on the Euler equations include (Johnsen
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1 Arbitrary Lagrangian–Eulerian.
2 Moving mesh interface tracking.
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and Colonius, 2006; Kawai and Terashima, 2010; Shyue, 1998,
2010). These methods are restricted to applications in simple phys-
ical models with simple state equations. These methods are inaccu-
rate in estimating the internal energy and temperature at the
interface. The other category of models is based on multiphase
equations (Abgrall, 1996). The most complete model is the seven-
equation model introduced by Saurel and Abgrall (1999). This mod-
el contains two velocities and two pressures and is efficient for
problems where the difference of phasic velocities is important.
Application of this model can present challenges due to non-con-
servative terms in the momentum, energy and volume fraction
advection equations. In this basis many effort has been spent for
modeling with this model (Munkejord, 2010; Tokareva and Toro,
2010; Dumbser and Toro, 2010). Another convenient model for sim-
ulation is the single-velocity six-equation model. This model is ob-
tained by assuming the velocity relaxation time to be zero and was
first introduced by Kapila et al. (2001). This model shows good
capability in simulating two-phase flow with an interface when val-
idated by Saurel et al. (2009). Another model that is suitable for
multiphase flow simulation is the reduced five-equation model,
also known as the Kapila model (Kapila et al., 2001; Murrone and
Guillard, 2005). There are two main problems in using this model.
First, the mixture sound velocity at the interface has non-mono-
tonic behavior. Second, the volume fraction equation has a non-
conservative term (Saurel et al., 2009). This model consists of two
mass conservation equations, one momentum conservation equa-
tion, one energy conservation equation in the conservative form
and one volume fraction advection equation in the non-conserva-
tive form. Recently, efforts to propose a suitable numerical method
for the five-equation model have increased (Kreeft et al., 2010; Qa-
mar and Ahmed, 2009; Kokh and Lagoutière, 2010). Murrone et al.
(2005) applied the reduced five-equation model for two-phase flow
simulation. In their two-dimensional test cases, the velocities were
low, and the shock wave interaction with the interface of the two-
phase flow was not considered. Kreeft and et al. (2010) presented a
new version of the five-equation Kapila model. Their model was
well behaved for two-dimensional compressible gas–gas flows.
However, the model behavior for a two-dimensional gas–liquid
interface was not demonstrated. Deledicque and Papalexandris
(2007) suggested a conservative approximation for the five-equa-
tion model. This method is suitable for modeling of two-pressure
solid–gas models or two phases with big differences in the material
properties. This model has limited application and can only be used
for two-phase solid–gas flow. Saurel et al. used the five-equation
model in several recent studies (Petitpas et al., 2007, 2009; Saurel
et al., 2007). In these studies, a new method and a new theory are
added to the model based on shock wave relationships. In fact, their
method is based on the development of a relaxation-projection
method for the Euler equations. The projection method is an indi-
rect method for differentiation of the advection equation. This
method is more efficient than previous methods, but it is more dif-
ficult to implement and extend to unstructured grids. The main
objective of the present work is to accurately simulate two-phase
gas–gas and gas–liquid interfacial problems, as well as cavitation
flow problems, with less computational cost by using reduced
five-equation models. In this study, the HLLC Riemann solver is
used for numerical simulation of compressible two-phase flow. To
circumvent the inherent difficulties in solving the five-equation
models outlined earlier, the following four steps were taken:

– Using appropriate sound velocity with less non-monotonic
behavior, the wood sound relation is not applicable.

– A suitable discretization of the advection equation.
– Preventing negative pressure during numerical calculation of

cavitation zones due to strong rarefaction waves reflecting from
free surfaces by adapting a suitable cavitation equation of state.

– Numerical simulation of the governing equations using the
Godunov numerical method and the HLLC solver.

In this article, the mathematical properties of the five-equation
model and the Schmidt cavitation model are presented in Section 2.
The numerical method is explained in detail in Section 3. The
development of the model from the one- to two-dimensional case
with second-order accuracy is presented in Sections 4 and 5. Final-
ly, model verification and simulation results in one and two dimen-
sions are presented in Section 6 and concluding remarks are
presented in Section 7.

2. Kapila two-fluid flow model

The single speed, equal pressure, five-equation model is also
known as the reduced five-equation, or Kapila, model. This model
is the reduced model of Baer and Nunziato (1986). The multi-space
governing equations of this model, with the exclusion of heat and
mass transfer, are as follows:

@a
@t
þ~u � ~ra ¼ 0 ð1aÞ

@ða1q1Þ
@t

þr � ðq1a1~uÞ ¼ 0 ð1bÞ

@ða2q2Þ
@t

þr � ðq2a2~uÞ ¼ 0 ð1cÞ

@ðq~uÞ
@t
þr � ðq~u�~uÞ þ ~rP ¼ 0 ð1dÞ

@ðqEÞ
@t
þr � ððqEþ PÞ~uÞ ¼ 0 ð1eÞ

where a;q;~u; P; E; e are the volume fraction, density, velocity vector,
pressure, total energy and internal energy, respectively. The density
is obtained from

q ¼ ða1q1 þ a2q2Þ ð2Þ

The two-phase mixture internal energy is calculated from

e ¼ Y1 � e1ðq1; PÞ þ Y2 � e2ðq2; PÞ ð3Þ

where

YK ¼
ðaqÞk

q
ð4Þ

where the subscript k = 1, 2 representing gas or liquid phase,
respectively. In the present work, the stiffened-gas equation of state
(SGS) is used. In the equal-pressure condition, the internal energy of
phase, ek = ek(qk, P), is calculated using the following equation:

8k; qkek ¼
P þ ck � P1;k

ck � 1
ð5Þ

where ck and P1,k are constant parameters of stiffend gas equation
of state and are different for each fluid. The following equation for
pressure is used to close the set of equations:

Pðq; e;akÞ ¼
qe�

P
k

akckP1;K
ck�1P

k
ak

ck�1

ð6Þ

For this model the mixture sound velocity is defined as

c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c � ðP þ P1Þ

q

s
1

c� 1
¼
X

k

ak

ck � 1

c:P1
c� 1

¼
X

k

akckPk1

ck � 1
ð7Þ
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