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a b s t r a c t

Stability analysis of double-diffusive convection for viscoelastic fluid with Soret effect in a porous med-
ium is investigated using a modified-Maxwell–Darcy model. We use the linear stability analysis to inves-
tigate how the Soret parameter and the relaxation time of viscoelastic fluid effect the onset of convection
and the selection of an unstable wavenumber. It is found that the Soret effect is to destabilize the system
for oscillatory convection. The relaxation time also enhances the instability of the system. The effects of
Soret coefficient and relaxation time on the heat transfer rate in a porous medium are studied using the
nonlinear stability analysis, the variation of the Nusselt number with respect to the Rayleigh number is
derived for stationary and oscillatory convection modes. Some previous results can be reduced as the spe-
cial cases of the present paper.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Double-diffusive convection in porous media due to tempera-
ture and convection and concentration gradients has been widely
studied because of its numerous fundamental and industrial appli-
cations. The double-diffusive convection is of importance in vari-
ous fields such as high quality crystal production, liquid gas
storage, oceanography, production of pure medication, solidifica-
tion of molten alloys, and geothermally heated lakes and magmas.
The enormous volume of work devoted to this field is well docu-
mented in the books by Nield and Bejan (1999), Ingham and Pop
(2002), Vafai (2000), Pop and Ingham (2001). However, in a binary
fluid, the cross-coupling between thermal diffusion and solutal dif-
fusion should not be negligible. The Swiss scientist, Charles Soret,
discovered that a salt solution contained in a tube with the two
ends at different temperatures did not remain uniform in compo-
sition in 1879 (Soret, 1879). The salt was more concentrated near
the cold end than near the hot end of the tube. The phenomenon
of a flux of solute generated by a temperature gradient is known
as the Soret effect. During the past decades, the study of Soret
effect on a developed natural convection in porous media has
received great importance and interests (Bergeron et al., 1998;
Bourich et al., 2002, 2004; Mahidjiba et al., 2006; Malashetty
et al., 2006).

Charrier-Mojtabi et al. (2007) studied the linear and nonlinear
stability of the equilibrium solution and the monocellular flow in
a horizontal porous layer filled by a binary fluid and heated from
below or above. The Soret effect is taken into account and the influ-
ence of both the separation ratio and the normalized porosity is
studied. Bennacer et al. (2003) considered the Soret effect on con-
vection in a horizontal porous cavity submitted to cross gradients
of temperature and concentration. Their results showed that, when
the vertical concentration gradient is stabilizing, multiple steady-
state solutions become possible over a range of buoyancy ratios
which is strongly dependent on the Soret parameter. Bahloul
et al. (2003) considered the double-diffusive and Soret-induced
convection in a shallow horizontal porous layer, and the stability
of the parallel flow solution is studied, then the threshold for Hopf
bifurcation is determined. Bourich et al. (2005) studied analytically
and numerically the Soret effect on thermal natural convection
within a horizontal porous enclosure uniformly heated from below
by a constant heat flux using the Brinkman-extended Darcy model.
It is found that the separation parameter has a strong effect on the
thresholds of instabilities and the heat and mass transfer
characteristics.

Recently, interest in viscoelastic flows through porous media
has also grown considerably, due largely to the demands of such
diverse areas as biorheology, geophysics, chemical and petroleum
industries (Capuani et al., 2003; Hayat et al., 2007; Khaled and
Vafai, 2003; Masuoka et al., 2003; Wang, 2002; Younes, 2003).
The mathematical model of Maxwell fluid has been served as a
simplified description of dilute polymeric solutions/fluids (Raikher
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and Rusakov, 1996; Speziale, 2000) and has also been used to de-
scribe the rheology of flour doughs (Schofield and Scott Blair,
1932), as well as other viscoelastic fluids, include glycerin (Raman
and Venkateswaran, 1939), toluene (Reiner, 1960), crude oil (Tsikl-
auri and Beresnev, 2001a, 2001 b), etc. Based on the thermody-
namical analysis and using symmetry and frame indifferent
arguments, Preziosi and Farina found out that the Darcy model
needs to be modified to account for the mass exchange (Preziosi
and Farina, 2002). Making an analogy with the constitutive
equation of the Maxwell fluid, the following phenomenlogical
model for non-Newtonian fluids in porous medium is introduced
(Khuzhayorov et al., 2000; Tan and Masuoka, 2007)

1þ �k
@

@t

� �
rp ¼ �l

K
V; ð1Þ

which is called the modified-Darcy–Maxwell model, where �k is the
stress relaxation characteristic time constant, K the permeability of
the porous medium, l the effective fluid viscosity in the porous
medium, p the pressure, and V the Darcian velocity. Comparison
Eq. (1) with the constitutive equation of Maxwell fluid, it is obvi-
ously that the time derivative in Eq. (1) is related to the non-New-
tonian behavior of real fluids in porous medium.

However, the study of Soret-driven double-diffusion convection
of viscoelastic fluid in a porous medium has not been given any
attention in spite of its importance in many practical applications.
In the present study, the modified-Darcy–Maxwell model is con-
sidered for a porous medium saturated by the viscoelastic fluid.
The influences of the Soret effect and relaxation time on the natu-
ral convective flows between two parallel infinite stress-free
boundaries and heated from below by a constant temperature
were studied. The effects of Soret coefficient and relaxation time
on the Nusselt number is studied, respectively.

2. Basic equations

We consider a system consisting of a homogeneous and isotro-
pic horizontal porous layer saturated with Boussinesq Maxwell
fluid confined between parallel boundaries z = 0 and z = d, which
are maintained at constant but different temperatures and solute
concentrations T1, S1 and T2, S2 (T1 > T2, S1 > S2), respectively. Then
the onset of double-diffusive convection can be studied under the
Boussinesq approximation and an assumption that the density of
the fluid q depends linearly on the temperature T and solute con-
centration S

qf ¼ q0½1� bTðT � T0Þ þ bSðS� S0Þ�; ð2Þ

where qf and q0 are the densities at the current and reference state,
respectively. The quantities bT and bS are the coefficients for ther-
mal and solutal expansion, respectively. The subscript 0 denotes
the reference state. Because of the Boussinesq approximation,
which states that the effect of compressibility is negligible every-
where in the conservations except in the buoyancy term, is as-
sumed to hold, then the equations for conservation of mass,
momentum read, respectively

r � V ¼ 0; ð3Þ
l
K

V ¼ 1þ �k
@

@t

� �
ð�rpþ qgÞ; ð4Þ

where V = (u,v,w) is the volume average velocity obtained by the lo-
cal volume averaging technique (Ingham and Pop, 2002; Slattery,
1999) and g is the acceleration due to gravity.

The phenomenological equations relating the fluxes of heat JT

and matter JC to the thermal and solute gradients present in a bin-
ary fluid mixture are given by De Groot and Marur (1962)

JT ¼ �krT ð5Þ
JC ¼ �qDrS� qD0Sð1� SÞrT ð6Þ

where k and D are the thermal conductivity and the mass diffusivity
of species through the fluid-saturated porous medium, respectively,
D0 is the effect thermal diffusion coefficient.

Then the equations expressing conservation of energy and spe-
cies are given by

ðqCÞp
@T
@t
þ ðqCÞf ðV � rÞT ¼ kr2T ð7Þ

/
@S
@t
þ ðV � rÞS ¼ Dr2Sþ D0Sð1� SÞr2T ð8Þ

where (qC)p and (qC)f are respectively the heat capacity of the fluid
and the saturated porous medium. Hurle and Jakeman (1971) treat
the term S(1 � S) in the Soret effect as having a mean constant value,
hence we here treat the Soret term to have a constant coefficient.
From the mathematical viewpoint we may write the concentration
equation, in the presence of Soret effect in the following form:

/
@S
@t
þ ðV � rÞS ¼ Dr2Sþ Dsr2T; ð9Þ

here Ds quantifies the contribution to the mass flux due to temper-
ature gradient.

The basic state of the fluid is quiescent and is given by

Vb ¼ ð0;0;0Þ P ¼ PbðzÞ; q ¼ qbðzÞ; T ¼ TbðzÞ

S ¼ SbðzÞ; dPb
dz ¼ qbg; d2Tb

dz2 ¼ 0; d2Sb

dz2 ¼ 0
: ð10Þ

Then we superpose perturbation on the basic state in the form

V ¼ Vb þ V0; P ¼ PbðzÞ þ P0

q ¼ qbðzÞ þ q0; T ¼ TbðzÞ þ T 0; S ¼ SbðzÞ þ S0
; ð11Þ

where the primes indicate perturbations. Then we have

r � V0 ¼ 0 ð12Þ
l
K

V0 ¼ � 1þ �k
@

@t

� �
rp0 � kgq0ðbT T 0 � bSS0Þ
� �

ð13Þ

ðqCÞp
@T 0

@t
þ ðqCÞf ðV

0 � rÞT 0 þw0
@Tb

@z

� �
¼ kr2T 0 ð14Þ

/
@S0

@t
þ ðV0 � rÞS0 þw0

@Sb

@z
¼ Dr2S0 þ Dsr2T 0 ð15Þ

We define the stream function w by ðu0;w0Þ ¼ @w
@z ;�

@w
@x

� 	
, which

satisfies the continuity equation. Eliminating the pressure term
form Eq. (13), introducing the stream function w and non-dimen-
sionalizing the resulting equation as well as Eqs. (14) and (15)
using the following non-dimensional parameters:

ðx�; z�Þ ¼ x
d
;
z
d


 �
; t� ¼ tj

d2M
; w� ¼ w0

s
; T� ¼ T 0

DT
; S� ¼ S0

DS
;

ð16Þ

here j = s/(qC)f is the thermal diffusivity of the porous medium,
M = (qC)p/(qC)f is a dimensionless number which indicates the heat
capacity ratio. Then we obtain (for simplicity, the asterisks, i.e., the
dimensionless mark will be neglected hereinafter)

r2w ¼ � 1þ k
@

@t

� �
Ra
@T
@x
þ Rs

@S
@x

� �
ð17Þ

@T
@t
þ @w
@x
� @ðw; TÞ
@ðx; zÞ ¼ r

2T ð18Þ

e
@S
@t
þ @w
@x
� @ðw; SÞ
@ðx; zÞ ¼

1
Le
r2Sþ Srr2T
h i

ð19Þ

where k ¼ �kj
d2M

is dimensionless relaxation time, Ra ¼ bT gMTd3

mj is

thermal Rayleigh number, Rs ¼ bSgMSd3

mj is solutal Rayleigh number,
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