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a b s t r a c t

Double-diffusive convection in vertical annuluses with opposing temperature and concentration
gradients is of fundamental interest and practical importance. However, available literature especially
for higher Rayleigh numbers beyond Ra 6 105 is sparse. In this study, we investigated double diffusion
induced convection up to Ra ¼ 107 using a simple lattice Boltzmann model. Thanks to the good stability
of the present model, a modest grid resolution is sufficient for the present simulations. The influences of
the ratio of buoyancy forces 0:8 6 N 6 1:3, the aspect ratio 0:5 6 A 6 2 and the radius ratio 1:5 6 K 6 3
on heat and mass transfer characteristics are discussed in detail.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Double-diffusive convection, i.e. flows generated by buoyancy
due to simultaneous temperature and concentration gradients
are ubiquitous in natural as well as technical systems. In nature
such flows are frequently encountered in oceans, lakes, solar
pounds, shallow coastal waters and the atmosphere. In industry
examples include chemical processes, crystal growth, energy
storage, material processing such as solidification, food processing
etc. For a review of the fundamental work in this area, see Turner
(1974) and Schmitt (1994).

Available studies related to double-diffusive convection are
mostly concerned with rectangular cavities. Pioneering experi-
ments were carried out by Kamotani et al. (1985). Their work
showed that when a stable stratified solution is heated from one
side, multicellular flow structures can be observed. Later, Gobin
and Bennacer (1996) identified the different regimes dominated
by thermal or solutal effects in terms of the buoyancy ratio and
the Lewis number based on numerical simulations. The instability
of double-diffusive convection has been studied analytically by
Bardan et al. (2000). More recently, Sezai and Mohamad (2000)
and Bergeon and Knobloch (2002) carried out three-dimensional
numerical simulations on double-diffusive convection in cubic cav-
ities, to cite only a few. However, there are only few studies on
double-diffusive convection in vertical annuluses (Retiel et al.,
2006), although convection related phenomena in vertical annu-

luses are scientifically more interesting than those in rectangu-
lar/cubic cavities (Turner, 1974). Shipp et al. (1993), Shipp et al.
(1993) investigated thermosolutal convection in concentric annu-
lar cavities at low and moderate Lewis numbers. Bennacer et al.
(2000) simulated the thermosolutal convection in vertical annular
cavities containing a porous medium. Recently Retiel et al. (2006)
investigated the effect of the curvature ratio on convectional pat-
terns. The latest work on double-diffusive convection in vertical
annuluses was conducted by Bennacer et al. (2009). In their work,
they studied the Soret effect for double-diffusive convection in
detail. In almost all previous works on this field, the Rayleigh num-
ber was relatively low (Ra 6 105).

In the present work, the double-diffusive convection in vertical
annuluses with opposing temperature and concentration gradients
is reported for higher Rayleigh numbers up to Ra ¼ 107 . The influ-
ences of the ratio of buoyancy forces 0:8 6 N 6 1:3, the aspect ratio
0:5 6 A 6 2 and the radius ratio 1:5 6 K 6 3 on heat and mass
transfer characteristics are discussed in detail in this study. In
order to numerically solve the governing equations for such dou-
ble-diffusive convection, a simple lattice Boltzmann (LB) model,
which is an extension of the model proposed in our previous works
(Chen et al., 2008; Chen et al., 2009), is employed in this paper. The
present model possesses three obvious advantages inherited from
our previous models (Chen et al., 2008; Chen and Tolke, 2009):

1. The present model is algorithmically simple, which is an attrac-
tive advantage for both practitioners and novices.

2. Tts stability and low numerical viscosity allows the use of rela-
tively coarse grids for flow with high Rayleigh numbers which
reduces computational costs. and
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3. The derivation of the present model is quite straightforward as
is often observed for kinetic models (see also the recent review
Yu et al., 2003).

2. Governing equations for double-diffusive convection in
vertical annuluses

The configuration of the vertical annulus is illustrated in Fig. 1.
The inner wall with the radius Ri and the outer wall with Ro.
K ¼ Ro=Ri is the radius ratio. The aspect ratio is defined as
A ¼ H=ðRo � RiÞ, where H is the height of the annular cavity.

Based on the Boussinesq assumption, the primitive-variables-
based governing equations for double-diffusive convection in the
cylindrical coordinate system can be written as (Retiel et al.,
2006; Shipp et al., 1993; Shipp et al., 1993; Chamkha and Al-Naser,
2002)
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u and it w are radial and axial velocity components, p is the pres-
sure, T is the temperature, C is the concentration, m is the kinematic

viscosity, g is the gravitational acceleration along the negative
z-axis, j is the thermal conductivity, q is the density, D is the
species diffusivity, aT and ac represent the coefficients of thermal
expansion and compositional expansion respectively.

For double-diffusive convection in a cylindrical coordinate sys-
tem, computation time can be reduced if the problem is reformu-
lated so that the three variables u, w, p are eliminated in favor of
the vorticity x and the Stokes streamfunction w (Chen et al.,
2008; Chamkha and Al-Naser, 2002; Langlois, 1985; Chen et al.,
2008), which are defined as
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Nomenclature

c fluid particle speed
Xk collision term in Eq. (31)
D coefficient related to Eq. (31)
~u fluid velocity vector
~ek discrete velocity
� o;k;X

0
k source terms in Eqs. (25), (31)

~g gravity
gk; f k distribution function for Eqs. (17), (18) and Eq. (19)
geq

k ; f eq
k equilibrium distribution function for Eqs. (1)–(3)

H height of simulation domain
S Svanberg vorticity
T temperature
R radius
N ratio of buoyancy forces
Pr Prandtl number
Le Lewis number
Ra Rayleigh number
p pressure
K curvature ratio
A aspect ratio
~x phase space

Greek symbols
Dx; Dt grid spacing, time step
j thermal conductivity
a expansion coefficient
m kinematic viscosity
x; w vorticity, streamfunction
s relaxation time for Eq. (25)
sw relaxation time for Eq. (31)
q density
f dimensionless time
fk; nk weights for equilibrium distribution function
d; v coefficients in Eqs. (29) and (30)
l dynamic viscosity

Subscripts and superscripts
l dynamic viscosity
o, i outer, inner
0 reference value
k discrete velocity direction
c concentration
T temperature

z

Ri

Ro

top wall

bottom wall

outer wall

inner wall

T=-0.5
C=-0.5

dT/dz=dC/dz=0

T=0.5
C=0.5

dT/dz=dC/dz=0

gravity

Fig. 1. Configuration of the computational domain and boundary conditions.
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