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This article examines the extensional flow and viscosity and the converging-diverging geometry as the
basis of the peculiar viscoelastic behavior in porous media. The modified Bautista-Manero model, which
successfully describes elasticity, thixotropic time dependency and shear-thinning, was used for modeling
the flow of viscoelastic materials which also show thixotropic attributes. An algorithm, originally pro-
posed by Philippe Tardy, that employs this model to simulate steady-state time-dependent flow was
implemented in a non-Newtonian flow simulation code using pore-scale modeling. The simulation
results using two topologically-complex networks confirmed the importance of the extensional flow
and converging-diverging geometry on the behavior of non-Newtonian fluids in porous media. The anal-
ysis also identified a number of correct trends (qualitative and quantitative) and revealed the effect of
various fluid and flow parameters on the flow process. The impact of some numerical parameters was
also assessed and verified.
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1. Introduction

The study of the flow of non-Newtonian fluids in porous media
is of immense importance and serves a wide variety of practical
applications in processes such as enhanced oil recovery from
underground reservoirs, filtration of polymer solutions, and soil
remediation through the removal of liquid pollutants. Viscoelastic-
ity and thixotropy are two of the main features of non-Newtonian
behavior. They are usually associated with the polymeric sub-
stances that are widely used in petroleum industry, chemical engi-
neering systems, and many other scientific and industrial
applications. Despite the fact that a massive amount of literature
on these subjects do exist, there are few attempts to model these
phenomena in connection with the flow through porous media.
This is partly due to the mathematical complexity of these fluid
models. Further difficulties are usually encountered in modeling
the flow through porous media especially morphologically-com-
plex ones.
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In the recent years, a number of researchers have used pore-
scale network modeling to describe the flow of complex fluids in
porous media. In this context, Lopez et al. (2003), Lopez and Blunt
(2004) investigated single- and two-phase flow of shear-thinning
fluids in porous media using Carreau model in conjunction with
network modeling. Sochi and Blunt (2008) followed a similar ap-
proach in their investigation of single-phase flow of Ellis and Her-
schel-Bulkley fluids through porous media. Balhoff and Thompson
(2004, 2005) used a network model extracted from a computer-
generated random sphere packing to investigate various aspects
of non-Newtonian flow in packed beds. In this article we adopt
pore-scale network modeling using two random networks to sim-
ulate the flow of Bautista—-Manero fluids in porous media. Bautis-
ta-Manero is a reasonably-sophisticated model that is capable of
describing various aspects of viscoelasticity and thixotropy among
other non-Newtonian attributes.

1.1. Non-Newtonian fluids

Non-Newtonian fluids are commonly divided into three broad
groups: time-independent, viscoelastic and time-dependent
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Nomenclature

Note: Units, when relevant, are given in the SI system. Vectors and
tensors are marked with boldface. Some symbols may rely
on the context for unambiguous identification.

P strain rate (s71)

7 rate-of-strain tensor

A structural relaxation time in Fredrickson model (s)

M relaxation time (s)

22 retardation time (s)

u viscosity (Pa s)

Lo zero-shear viscosity (Pas)

U infinite-shear viscosity (Pa s)

T stress (Pa)

T stress tensor

fe scale factor for the entry of corrugated tube (-)

fm scale factor for the middle of corrugated tube (-)

G geometric conductance (m*)

el flow conductance (m3Pa~'s™1)

Go elastic modulus (Pa)

k parameter in Fredrickson model (Pa~)

L tube length (m)
P pressure (Pa)
AP pressure drop (Pa)
Q volumetric flow rate (m3s1)
r radius (m)
R tube radius (m)
Req equivalent radius (m)
Rinax maximum radius of corrugated capillary
Ruin minimum radius of corrugated capillary
t time (s)
fluid velocity vector
Vv fluid velocity gradient tensor
1% fluid speed (ms~1)
ox small change in x (m)
v upper convected time derivative
)7 matrix transpose
X network lower boundary in the non-Newtonian code
Xy network upper boundary in the non-Newtonian code

(Skelland, 1967; Chhabra and Richardson, 1999). The first group is
characterized by the fact that the strain rate at a given point is so-
lely dependent upon the instantaneous stress at that point. The
second group includes the fluids that show partial elastic recovery
upon the removal of a deforming stress. The third group consists of
those fluids for which the strain rate is a function of both the mag-
nitude and the duration of stress and possibly of the time lapse be-
tween consecutive applications of stress. A large number of models
have been proposed in the literature to model all types of non-
Newtonian fluids under various flow conditions. Most these mod-
els are basically empirical in nature and arise from curve-fitting
exercises (Barnes et al., 1993).

1.2. Viscoelastic fluids

Viscoelastic substances exhibit a dual nature of behavior by
showing signs of both viscous fluids and elastic solids. Polymeric
fluids often show strong viscoelastic effects, which can include
shear-thinning, extension thickening, viscoelastic normal stresses,
and time-dependent rheology. The equations describing the flow
of viscoelastic fluids consist of the basic laws of continuum mechan-
ics and the rheological equation of state describing a particular fluid
and relates the viscoelastic stress to the deformation history. Many
differential and integral viscoelastic constitutive models have been
proposed in the literature to describe the the observed viscoelastic
phenomena. What is common to all these is the presence of at least
one characteristic time parameter to account for the fluid memory
(Larson, 1988, 1999; Keunings, 2004; Owens and Phillips, 2002).

The behavior of viscoelastic fluids is drastically different from
that of Newtonian and inelastic non-Newtonian fluids. This in-
cludes the presence of normal stresses in shear flows, sensitivity
to deformation type, and memory effects such as stress relaxation
and time-dependent viscosity. These features underlie the ob-
served peculiar viscoelastic phenomena such as rod-climbing
(Weissenberg effect), die swell and open-channel siphon (Boger,
1987; Larson, 1988).

The behavior of viscoelastic fluids at any time is dependent on
their recent deformation history, that is they possess a fading
memory of their past. Indeed a material that has no memory can-
not be elastic, since it has no way of remembering its original
shape. Many materials are viscoelastic but at different time scales
that may not be reached. Therefore the concept of a natural time of

a material is important in characterizing the material as viscous or
elastic. The ratio between the material time scale and the time
scale of the flow is indicated by a non-dimensional number: the
Deborah or the Weissenberg number (Barnes et al., 1993; Boger,
1987; Bird et al., 1987; Larson, 1988).

A common feature of viscoelastic fluids is stress relaxation after
a sudden shearing displacement where stress overshoots to a max-
imum then starts decreasing exponentially and eventually settles
to a steady-state value. This phenomenon also takes place on ces-
sation of steady shear flow where stress decays over a finite mea-
surable length of time. A defining characteristic associated with
stress relaxation is the relaxation time which may be defined as
the time required for the shear stress in a simple shear flow to re-
turn to zero under constant strain condition (Bird et al., 1987; Dei-
ber, 1978; Larson, 1988).

1.3. Important aspects for viscoelastic flow in porous media

In the last few decades, a general consensus has emerged that in
the flow of viscoelastic fluids through porous media elastic effects
should arise, though their precise nature is unknown or controver-
sial. Strong experimental evidence indicates that the flow of visco-
elastic fluids through packed beds can exhibit rapid increases in
the pressure drop, or an increase in the apparent viscosity, above
that expected for a comparable purely viscous fluid. This increase
has been attributed to the extensional nature of the flow field in
the pores caused by the successive expansions and contractions
that a fluid element experiences as it traverses the pore space. Even
though the flow field at pore level is not an ideal extensional flow
due to the presence of shear and rotation, the increase in flow
resistance is referred to as an extension thickening effect (Phan-
Thien and Khan, 1987; Plog, 2002; Deiber and Schowalter, 1981,
Pilitsis and Beris, 1989).

There are two major interrelated aspects that have strong im-
pact on the flow through porous media. These are extensional flow
and converging-diverging geometry.

1.3.1. Extensional flow

One complexity in the flow in general and through porous med-
ia in particular usually arises from the coexistence of shear and
extensional components; sometimes with the added complication
of inertia. Pure shear or elongational flow is very much the
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